
A STATE OF THE ART REPORT:
 SOFTWARE DESIGN METHODS

Contract Number F30602-92-C-0158, CDRL A010
Data & Analysis Center for Software

March 1994

Prepared for:

Rome Laboratory
RL/C3CB

Griffiss AFB, NY 13441-4505

Prepared by:

Kaman Sciences Corporation
258 Genesee Street

Utica, New York 13502-4627



i

    PREFACE

This state-of-the-art review provides an analysis of the status of software design
methods. It was researched and published as a service of the Data & Analysis Center
for Software (DACS). The DACS is a Department of Defense Information Analysis
Center (IAC) whose mission is to support the development, testing, validation,
distribution and use of software engineering technologies. The DACS is operated by
Kaman Sciences Corporation of Utica, New York under the sponsorship of the
Defense Technical Information Center (DTIC), Alexandria, Virginia. It is monitored
by the U.S. Air Force's Rome Laboratory in Rome, New York under contract
number F30602-92-C-0158.

The topic of software design is an extensive one with a rich history. Views of
software design can range from very focused to those which cover the whole
spectrum of software development. This report attempts to provide readers with a
useful snapshot of software design technology that can be used as a tutorial for the
uninitiated, a starting point for detailed research, or a guide for those who will be
developing software in the future. The report includes coverage on the nature of
design, its evolution, its status, and directions for the future. Section 2.0 covers the
nature and history of design. Section 3.1 covers new paradigms for software
development and the role design plays in these paradigms. Section 3.2 examines
programming paradigms. These paradigms do not derive from development
concerns, but do shape the form of program design and software development
paradigms. Section 3.3 discusses a selection of specific design technologies that may
standalone, or may be definable only in the context of a larger software development
methodology. Section 3.4 discusses software design and its place in future integrated
CASE environments. Section 3.5 describes the issues related to software design "In
the Large" and how these issues are being addressed. Section 3.6 discusses the need
to enforce good design within a methodology or software development
environment. Finally, Section 4.0 reflects the authors' perceptions of the state of the
art of software design as indicated by this research, and some ideas are discussed as to
where software design research could lead to from here. Object-Oriented technology
and its influences on software design are covered because this technology promises
to have a large impact on future software development.
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1 .    INTRODUCTION

1 .1 Scope

This state of the art review critiques the technical state of software design methods.
Software design is almost universally recognized by software engineering
practitioners as a distinct activity required for the achievement of well-engineered
software. Well-engineered in this sense means engineered with consideration of
quality factors such as reliability, maintainability, and usability, in the same manner
that a fine automobile or a computer hardware system would be.

Definitions of design are as diverse as design methods. Coad and Yourdon (1991)
define software design as an activity:

"The practice of taking a specification of externally observable behavior
and adding details needed for actual computer system implementation,
including human interaction, task management, and data
management details."

Webster (1988) defines software design as a representation:

"In a sense, design is representation -- of an object being created. A
design is an information base that describes aspects of this object, and
the design process can be viewed as successive elaboration of
representations, such as adding more information or even backtracking
and exploring alternatives."

Stevens (1991) is more input/output oriented and to him software design is:

"... a process of inventing and selecting programs that meet the
objectives for a software system. Input includes an understanding of
the following:

1. Requirements.
2. Environmental constraints.
3. Design criteria.

"The output of the design effort is composed of the following:

1. An architecture design which shows how pieces are interrelated.
2. Specifications for any new pieces.
3. Definitions for any new data."

As a distinct sequential phase, the Military Standard for Defense System Software
Development (DOD-STD-2167A) places design between the Requirements Analysis
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and Coding and Unit Testing phases, and further partitions software design into
Preliminary Design and Detailed Design activities. Preliminary design, which others
may classify as system design, architectural design, or top-level design, has to do
with the identification of modules that can be logically partitioned into separate
functions for purposes of implementation convenience. Detailed design then
focuses in on the internal logic of these modules (Jalote, 1991). In Steven's (1991)
definition, preliminary design corresponds to output 1 and detailed design
corresponds to outputs 2 and 3.

Webster (1988) and Belady (1990) talk about upstream and downstream design.
Upstream design is adaptable and abstract and tends to fall within the domains of
DOD-STD-2167A's Requirements Analysis and Preliminary Design phases, while
downstream design is concerned with modules, code and documentation and tends
to fall within DOD-STD-2167A's Detailed Design and Coding phases. Upstream
activities require a greater component of human expertise and interaction while
downstream activities lend themselves more readily to automation. Downstream
activities begin when the software designer is confident that his top-level design is
correct and complete, and is ready for detailed design. As we shall see later, DOD-
STD-2167A's distinct phases are related to the traditional waterfall model of software
development that is now being challenged by new evolutionary paradigms and
increased automation of the software development process. For example, i n
software development paradigms like the transformational model, design is always
accomplished at the specification level and the paradigm relies on the idea that the
specification can be formal enough to be compiled into code.

This review will consider both preliminary and detailed design methods, but they
will not generally be distinguished because much of the current thinking on
software development does not explicitly make such a distinction. To support this
notion, the review will consider methodologies that embed design methods and
other activities, within new software development environments. This document
will also consider both the conceptual model of the design method and the tools
required to realize that method.

1 .2 Background

Software design is a problem-solving process whereby the designer applies
techniques and principles to produce a conceptualization, or logical model, that
describes and defines a solution to a problem perceived in reality. This process is not
well structured; the solution set is not limited, the model as built by the designer
cannot always accurately represent the problem, and there is no known measure of
the effectiveness of the many possible courses of action (Olle, Soland & Tully, 1983).

Since the 1960s, software design methodologies have been evolving; as
understanding of the process expands, new and better methods are developed.
Computer software design, however, is still evolving and cannot be considered
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totally equivalent to other engineering design disciplines. Where early design
methods addressed specific aspects of software development, current methods are
attempting to fit comfortably within the entire scope of software development.
However, many of the current software design methods do not include components
that address problem-solving, even fewer consider the human factors aspect, and for
some of the newer information systems technologies (robotics, for example)
alternative design philosophies are being considered.

Like art objects that can be classified by the age in which they were produced, the
many software design methods that have been developed can be classified according
to the period in which they were introduced during the evolution of software
engineering. Driven by recognized problems, the software community initiated
solutions and then developed tools implementing the solutions. Responding to
coding and testing problems, early methods dwelt on modularity and top-down
development, stepwise refinement, information hiding and levels of abstraction
that led to the development of structured languages. Poorly structured designs were
dealt with using structured techniques such as structured design, structured analysis
and data flow analysis.

Most recently, much of the interest of the software engineering community has
been shifted to object oriented (O-O) design. Inefficient designs and development are
being addressed with Computer Aided Software Engineering (CASE) tools, fourth
generation languages and design languages. Now that the expense involved i n
automating systems has shifted from hardware to people, there is considerable effort
directed toward replacing, or at least augmenting, the familiar waterfall life cycle
process model espoused by Boehm (1976), under which most existing software has
been developed. It is now thought that this model does not adequately represent the
development process of newer classes of software, especially domain-dependent
software. If this initiative succeeds, there will be an immense impact on software
design methods.
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2 .     OVERVIEW        OF        SOFTWARE        DESIGN        METHODS

Each software design method has as its goal to provide the software designer with a
blueprint from which a reliable system may be built. This section covers the nature
of software design in more detail. It defines the fundamentals which software design
should adhere to, design's role as a representational model, and a historic
perspective on design.

2 .1 Design Fundamentals

Three distinctive aspects of an information system are addressed during its software
design. Data design is involved with the organization, access methods, associativity,
and processing alternatives of the system's data. Architectural (preliminary) design
defines the components, or modules, of the system and the relationships that exist
between them. Procedural (detailed) design uses the products of the data and
architectural design phases to describe the processing details of the system -- module
internals. Software design methods attempt to aid the designer in each of these three
aspects; they assist in partitioning the software into smaller components and
reducing complexity; they help to identify and isolate data structures and functions;
and they attempt to provide some measure of software quality.

Regardless of its specifics, every software design method that has been introduced to
the software engineering community is based to some extent on the same proven
concepts, and shares common characteristics (Pressman, 1987). They each aid the
designer by providing the following:

• A mechanism translating the physical problem to its design representation.
• A notation for representing functional components and their interfaces.
• Heuristics for refinement and partitioning.
• Guidelines for quality assessment.

Fundamental concepts that have remained fairly constant, although the degree to
which they are stressed varies considerably, are stepwise refinement, software
architecture, program structure, data structure, software procedure, modularity,
abstraction, and information hiding.

2.1.1. Stepwise Refinement

Stepwise refinement is a top-down approach where a program is refined as a
hierarchy of increasing levels of detail. This process may be begun during
requirements analysis and conclude when the detail of the design is sufficient for
conversion into code. Processing procedures and data structures are likely to be
refined in parallel.
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2.1.2. Abstraction

Abstraction is a means of describing a program function, at an appropriate level of
detail. At the highest level of abstraction a solution is stated in the language of the
problem environment (requirements analysis). At the lowest level of abstraction,
implementation-oriented terminology is used (programming). An abstraction can
be compared to a model which incorporates detail only to the extent needed to fulfill
its purpose.

2.1.3. Software Architecture

While refinement is about the level of detail, architecture is about structure. The
architecture of the procedural and data elements of a design represents a software
solution for the real-world problem defined by the requirements analysis. It is
unlikely that there will be one obvious candidate architecture.

2.1.4. Program Structure

The program structure represents the hierarchy of control. Program structure is
usually expressed as a simple hierarchy showing super-ordinate and subordinate
relationships of modules.

2.1.5. Data Structure

Data structure represents the organization, access method, associativity, and
processing alternatives for problem-related information. Classic data structures
include scalar, sequential, linked-list, n-dimensional, and hierarchical. Data
structure, along with program structure, makes up the software architecture.

2.1.6. Modularity

Modularity derives from the architecture. Modularity is a logical partitioning of the
software design that allows complex software to be manageable for purposes of
implementation and maintenance. The logic of partitioning may be based on related
functions, implementation considerations, data links, or other criteria. Modularity
does imply interface overhead related to information exchange between modules
and execution of modules.

2.1.7. Software Procedure

Software procedure provides a precise specification of the software processing,
including sequence of events, exact decision points, repetitive operations, and data
organization. Processing defined for each module must include references to all
subordinate modules identified by the program structure.
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2.1.8. Information Hiding

Information hiding is an adjunct of modularity. It permits modules to be designed
and coded without concern for the internals of other modules. Only the access
protocols of a module need to be shared with the implementers of other modules.
Information hiding simplifies testing and modification by localizing these activities
to individual modules.

2 .2 Design Representation

Webster (1988) defines design as an information base that describes the thing being
designed, and design methods as representations of this information. Webster
further states that there are two areas which representation must address: one that
makes the design method manageable for the human user and one that makes the
design method interpretable by the computer. Interpretability has, of course,
important ramifications for the ability to automate design and software
development in the whole.

Design methods are discussed here in terms of representation because
representation is a convenient way to compare the applicability of design methods.
In the reference, Webster rated the 44 technologies listed in Figure 1 according to
their ability to cover the representational needs of the design process. Of particular
interest was Webster's ranking of each technology's scope of application, and its
ability to meet both the needs of human processing and machine processing
(conceptual complexity versus processable expressiveness). These rankings are best
shown in Figures 2 and 3 which have been extracted from his article. In reference to
the distribution shown in Figure 3, Webster concludes that, "... complexity seems to
go up dramatically with increasing expressiveness, suggesting these methods may be
buying expressiveness at an inordinate cost in complexity." He also concludes that
object-oriented and frame-based representation show the most promise for
overcoming the shortcomings of conventional mechanisms. This conclusion is
supported by the placement of these representations in the map in Figure 3.

In considering Webster's results, it is important to remember that he viewed design
more as part of a continuous process and the technologies reviewed consist of both
design methods and comprehensive methodologies that accomplish design in some
way. The concept of upstream and downstream design that is used by Webster (See
Section 1.1) to qualify design activities provides a quick and dirty way to place design
methods in the general scheme of things. Webster did focus on the upstream leg of
design, arguing that the upstream and downstream activities must interface
continually and be compatible in representation. The placement of the technologies
reviewed in the life cycle can be seen in Figure 2.
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Figure 1. Representational Technologies Considered by Webster
(From Webster, D.E. (December, 1988). Mapping the Design Information

Representation Terrain. Computer, 21(12), 8-23.)

Figure 2. Applications Ranges of Representation Media
(From Webster, D.E. (December, 1988). Mapping the Design Information

Representation Terrain. Computer, 21(12), 8-23.)
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Figure 3. Processable Expressiveness versus Conceptual Complexity.
(From Webster, D.E. (December, 1988). Mapping the Design Information

Representation Terrain. Computer, 21(12), 8-23.)

2 .3 Historical Perspective

During the 1960s the arrival of sufficiently powerful hardware and the wide
availability of higher level programming languages resulted in computers being
applied to problems of increasing complexity. Reservation systems, personal record
systems, and manufacturing systems are a few examples. A significant percentage of
these systems was unsuccessful, late, or over budget due to the analysts' inability to
sufficiently:

• Translate complex problems to workable software solutions
• Take end-user opinions and practical needs into account
• Take into account the organizational environment
• Accurately estimate the development time and cost, and the operational costs
• Review the project progress with the customers in a regular and consistent

manner.
• Anticipate performance/technology tradeoffs (Wasserman, 1979).

This expansion of software development resulted in a widely recognized "software
crisis." This crisis made it apparent that a systematic approach was needed and the
concept "software engineering" emerged based upon the notion that an
engineering-like discipline could be applied to software systems. Meetings
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sponsored by NATO in 1968 and 1969 defined the problem more clearly and
established some start-up approaches.

During the late 1960s and early 1970s research on software engineering had little
direct impact on practical software development, but some of the most important
concepts were formed during this period. Among these were top-down design,
stepwise refinement, modularity, and structured programming. Structured
programming has had a widespread impact and has spawned a family of structured
techniques with many variations for different phases of the life-cycle. Structured
programming, as represented in its many forms and extensions, is still the most
dominant approach to software engineering. Figure 4 illustrates the evolution of
structured techniques.

Structured techniques are themselves evolving. Techniques introduced in the 1970s
were lacking in many ways, and methodologies were needed that:

• Were more complete.
• Were faster to use.
• Were based on sound data administration.
• Were suitable for fourth-generation languages and application generators.
• Were enhanced for user communication.
• Applied thorough verification techniques
• Solved the severe problems of maintenance
• Were suitable-for computer-aided design with interactive graphics (Martin &

McClure, 1985).

2.3.1. Flow Charts

Prior to the structured programming revolution, flowcharts were the predominant
method of representing program logic. Flowcharts are limited by a physical view of
the system that is improperly applied before overall logical requirements are
understood. Flow charts are essentially a detailed design method and have been
largely supplanted by such methods as structured English (a PDL as below), Nassi-
Sneiderman charts, and action diagrams which can enforce a structured approach
(Martin & McClure, 1985).

2.3.2. Program Design Languages

Program design languages (PDLs) are very-high-level programming languages
(Caine, 1975). They express the logic of a program in narrative form (Wasserman,
1979). A PDL is principally applied during the detailed design phase and it is best
used to describe algorithms and specify interfaces between modules. PDLs impose a
language syntax upon their users that makes it possible to use automated tools for
validity checking. PDLs were first proposed as a replacement for flowcharts.
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Figure 4. Evolution of Structured Techniques. (From Martin, J. & McClure, C. (1985).
Diagramming Techniques for Analysts and Programmers. Englewood Cliffs, NJ:

Prentice Hall, Inc.)
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2.3.3. Forms

In a forms-driven methodology, standard forms guide the analyst in the collection
and analysis of data and in preparing designs. IBM's Study Organization Plan (SOP)
method of the 1960s and its 1970s extension called Business Systems Planning (BSP)
are examples of early forms-driven software design techniques. While SOP offered
the analyst great creative latitude, the BSP version put more emphasis on
teamwork, strategic planning and database design. HIPO (Hierarchy Plus Input-
Process-Output) was subsequently developed by IBM as a documentation aid and
provided a structure for describing and understanding system functions through a
visual description of inputs, outputs and processes (Stay, 1976). HIPO's principal
advantages are its simplicity and its applicability for both specification and design. It
has several severe limitations:

• No representation of control flow information (loop, sequence, etc.).
• No provision for global data structures or databases.
• No differentiation between types of functional modules (common vs. library).
• No provision for user-oriented design (menus).
• Charts were difficult to produce and maintain.

A modernized version of HIPO that attempts to address these limitations is
discussed later in this document.

2.3.4. Data Structures

The Data Structure techniques propose a detailed prescription for designing systems
based on an analysis of the structure of the input and output data. This is a problem-
oriented approach in which the problem is expressed by a mapping of the input data
structures to the output data structures. These methods infer that the system is
implicit in its data structures. Methods based on this technique are those of Warnier
(1974), Jackson (1975), and Orr (1977).

Jackson's Method (JM) is representative. JM was founded on the belief that the
structure embodied in systems should correspond to the structure of the data being
processed. Jackson espoused four basic constructs to model both programs and data:
(1) elementary, (2) sequence, (3) iteration, and (4) selection. The original model was
limited to detailed design and did not address the need for a precise definition of the
inputs and outputs. The method has since been extended as the Jackson System
Design (JSD) into requirements analysis and programming (Cameron, 1986). JSD
begins with a model of the real world and the end product is compilable source code.
The implementation step is intended to be automatic. The design is transformed
from structured text to compilable code, and modification is achieved at the design
level. JSD does not provide any guidelines for analyzing the problem.
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2.3.5. Data Flow

Data flow techniques are based on analyzing the flow of data through the system in a
manner similar to that of data structure techniques. Flow diagrams are used to
perform a top-down segmentation of the system into successively simpler levels of
modularity. Examples of methods employing data flow techniques are the
following:

• Softech's Structured Analysis and Design Technique (SADT) (Ross, 1977).
• DeMarco's Structured Analysis (1978).
• Myers' Composite Design (1978).
• Yourdan and Constantine's Structured Design (1979).

Although based on structured programming, there are significant differences
between these popular software design methods. Structured Design (SD) partitions a
system into a hierarchical structure of loosely coupled modules within which exists
tightly coupled code. Using data flow diagrams (DFDs), a data dictionary, structured
English, and decision tables and trees, Structured Analysis (SA) builds a structured
system specification (establishing new standards for documenting the analysis phase
of system development). The output of a SA phase serves as input to the structured
design (SD) phase where a concept known as source/transform/sink (STS)
decomposition is applied to the DFDs to identify program modules. A source
identifies the bounds of the input data stream, a sink encapsulates the output data
stream, and the transform identifies the process of mapping the input to the output.

Structured design is primarily a method for architectural design and its greatest
strength lies in the early specification of subsystem interfaces. Its weaknesses lie i n
its narrow focus. It provides little direct help with specification and detailed design
although the development of structured analysis has satisfied the specification side.

Softech's proprietary SADT employs well-trained teams to perform data flow
analysis and documentation using the Softech communication tools. SADT is
primarily for requirements analysis and definition, and its products do not directly
transform into designs or implementation.

2.3.6. Conventional Life-Cycle Model

Of equal importance to the conception and evolution of structured programming
was the notion of the software life-cycle. The idea of a software life-cycle was also
adopted from the engineering community who recognized as early as the 1930s that
all products have a life of finite duration which begins at conception and
subsequently passes through phases of specification, design, implementation,
maintenance and obsolescence. For software engineering, a life-cycle provides a
series of distinct tasks to which engineering methods can be applied and hopefully
integrated as a life-cycle methodology. Figure 5 shows the conventional or
"waterfall" software development cycle in its best known form. This form was
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popularized by Barry Boehm (1976) who gives credit to W.W. Royce (1970) for its
original publication.

Agresti (1986a) claims the principle virtue of the waterfall model was its recognition
of design as a critical activity. He cites Boehm (1981) as an example of an author who
has shown the expensive consequences of premature coding without adequate
analysis and design. The waterfall model is being criticized today, if not replaced,
because:

• The availability of economic computer power no longer requires rigid planning
to accommodate expensive mainframe resources.

• Writing fixed, detailed specifications before coding is not effective and
evolutionary paradigms are needed.

• Automation and availability of tools that span several conventional phases have
eliminated the need for this strict partitioning.

Figure 5. Conventional "Waterfall" Software Development Life-Cycle Model
(From Boehm, B.W. (December 1976). Software Engineering.. IEEE Transactions on

Computers. c-25(12), 1226-1241.)

On the day an interactive video display first appeared on a user's desk, information
systems crossed a threshold. Because users rarely foresee what they either want or
can have, the waterfall model seldom delivers the correct solution on time. Because
requirements are always changing, it is difficult to execute the stages; as some parts
of a system are undergoing testing, new requirements demand changes in the
design. Some current thinking declares that there is no best way to develop modern
information systems and that the methodology to apply depends on the kind of
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system being developed. Systems can be typed as being "database," "decision
support," etc., and it begins to appear that quite different methodologies may be
appropriate for the design of each (Olive, 1983). There is a large consensus that
rather than a design methodology, a holistic development methodology should be
employed. Such a methodology would place emphasis in the beginning stages of
development, thus preventing and identifying errors at the earliest possible time,
and unifying the management of the process. Importance is attached to the need for
automated tools and for methods that lend themselves to automation. Quality
control measures are becoming increasingly important due to the complexity of
today's systems. Most significantly, end-user participation throughout the
development process is not only accepted, it is now considered critical to the success
of the system.

Section 3.1 of this paper discusses new paradigms for the software development life-
cycle. These paradigms attempt to address the above criticisms and take into account
opportunities for automation and the recognition that evolutionary development is
perhaps the more natural way to build software.

2.3.7. Object-Oriented Technology

Object-Oriented (O-O) software technology is likely the most active area of research
today, and this may mean the eventual obsolescence of many of the technologies
discussed above. O-O design is fundamentally different from the these traditional
functional methods (Booch, 1990). In these methods, decomposition relies on the
idea that each recognized module is a major step in the overall process, i.e., these
methods are procedural. O-O design, on the other hand, is structured around objects
and the functions they perform that exist in a model of reality.

The origins of O-O programming can be traced to the late 1960s and users of the
simulation language SIMULA. SIMULA represented a higher order language that
introduced class as a means to encapsulate data. During the early 1970s Xerox's Palo
Alto Research Center (PARC) developed the programming language Smalltalk from
O-O principles. Smalltalk is more than a language. It is a complete graphic user
interface (GUI) environment for assembling O-O programs and, as such,
demonstrates important concepts for automated O-O software development. As a
bonus, rapid prototyping capability is a natural fallout of object-oriented
development as implemented by Smalltalk. While Smalltalk plays only a minor
role in software development today, it is still the standard that all other O-O
languages are measured against, and it is often used as an example to teach O-O
principles to beginners.
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After all these years, why is O-O software development becoming a force in the
software development industry? Coad and Yourdon (1991) suggest four changes that
occurred in the last decade:

• "O-O concepts have had two decades to mature and attention has gradually
shifted from issues of coding to issues of design and analysis.

• "Underlying technologies for building systems have become much more
powerful. It has become easier to think about coding in an O-O fashion with the
availability of C++ and Smalltalk (and the platforms to support them).

• "The systems built today are larger, more complex, and more volatile. An O-O
approach to analysis and design is likely to lead to a more stable system. Today's
systems are on-line and interactive. An O-O approach to such systems -- from
analysis through design and into coding -- is a more natural way of dealing with
such user-oriented systems.

• "The systems built today are more 'domain oriented' than systems built in the
1970s and 1980s. Functional complexity is less of a concern; modeling the data has
become a moderate priority; modeling the problem domain understanding and
system responsibilities take a higher priority."
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3 .     CONTEMPORARY        SOFTWARE        DESIGN        METHODS

Conventional software development practices are emphasizing the idea that
increased effort in the early stages of development will result in a better product.
The intent of this up-front effort is the prevention and detection of errors at the
earliest possible moment. This coherent methodology concept produces a software
engineering environment wherein there exist definitive stages of development
characterized by specific products which may be reviewed and measured. The stages
and products involved in the process are determined by the specific process model
used as the framework for the environment, but they generally will map onto the
traditional life-cycle phases of analysis, functional specification, design,
implementation, testing, and maintenance. The modern environment additionally
includes management and communication modules that unify the process, tying
the stages together and generally improving the effectiveness of the process.

Some newly developed process models are not similarly structured. They do not
attempt to separate phases of software development, such as specification and
implementation, but instead support the concepts of stepwise refinement and
program transformation. They still keep unnecessary implementation decisions
out of the specification, but distinguish changes made during implementation that
arise due to a lack of foresight during initial specification as specification
modifications. One upshot of this latest stage in the evolution of software
engineering is that software design methods and/or tools can no longer be selected
without considering the relationship of design to the other elements in the process.
Questions that deal with making the overall development process easier, at less
cost, with more quality must be answered.

3 .1 New Paradigms

Although software design can be identified and defined as a distinct activity, it must
be compatible in both concept and implementation with essential development
activities such as analysis and coding that precede or follow it. To achieve this
compatibility and to provide a framework for life-cycle automation, a pattern of
thought or paradigm must be established. An example of a paradigm is the
traditional waterfall model of development, but developers of today's complex
information systems find that this paradigm is inadequate in the current
environment. In today's circumstances the demand for software is growing at a
much faster rate than the pool of adequately trained developers, and strict adherence
to the waterfall paradigm requires too much time. At the same time, very large,
complex systems are difficult to manage under this paradigm because the relevant
information is fragmented, spanning several disciplines, and is often incomplete or
inconsistent. The following sections highlight some alternative paradigms that are
representative of current thinking and are capable of using new software
development technologies to better advantage.
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3.1.1. Prototyping

Prototyping has been a hot topic in software engineering for more than a decade.
During the early nineteen eighties, when prototyping began receiving serious
attention, orthodox life cycle developers, considered it an expensive, time
consuming process; computing time was a scarce resource not to be "wasted" in the
iterative process of prototyping. Those more open and receptive saw it as an
effective way of understanding the users' needs and problems, thereby eliminating
costly rework later in the development process. They correctly pointed out that user
participants in the development phase found it difficult to understand either textual
requirement specifications or the interpretive models produced by structured
analysis tools.

Since that time, prototypes have successfully been used as a communications aid
between users and developers. After several iterations of the prototype, the
developers have a better understanding of the requirements and the users have a
better idea about how the system will eventually look and feel. Sometimes the
prototype has been used to evaluate performance capabilities or determine the
feasibility of a design. Whatever its purpose, within the context of the life-cycle
model, the prototype has usually been a "quick and dirty" affair, and, once the
sought after information has been obtained, it is discarded and conventional
software design ensues. In the prototyping paradigm, the prototype is usually not
discarded. Rather than being an adjunct to the life cycle model, the prototype
becomes the central focus of the process model. The prototype is scoped, scheduled,
allocated resources, and refined as depicted in Figure 6 (Agresti, 1986).

The number of times the prototyping loop is exercised is variable; the developers
may hit the mark on the first try, or the users may perceive a need to add-to or
change previously stated requirements. Once the prototype is certified by the user as
satisfying the perceived requirements, it is transformed into a delivered system. The
transformation effort is variable; it may require adding functionality whose need
was not previously apparent to the user, or in upgrading or replacing inefficient
parts of the prototype to meet required performance criteria. Some critics of this
process model suggest that the completed prototype be thought of as a specification
written in a program design language, to be used as input to the traditional system
design phase.

Prototyping usually begins very early in the development process, after some
preliminary fact finding establishes the substance, scope, and environment of the
proposed automation project. A cost/benefit analysis is also usually performed
during this period to obtain required approvals and funding. In the prototyping
paradigm, functional specifications are not frozen; on the contrary, users are
encouraged to revise and change their requirements. Frequently, users don't really
know what they want until they actually see it; they are not even aware of the
possibilities until a model of the system is in their hands. The process of
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demonstration, review, refinement and expansion of the prototype is one in which
the user comes closer to authoring the system.

A major decision to be made when following the prototyping paradigm is whether
to build a full sized production prototype or a scaled down model. If the system's
proposed functionality is fairly well understood, there are a small number of
functions, or, it is a standalone or single user system, a full scale prototype can be
built to become a full scale production system. However, if considerable uncertainty
about the feasibility of the system remains, or if prototyping tools are not available, a
scaled down model is more appropriate. Prototypes can be scaled down by only
generating uncertain functions or by reducing database size and/or complexity.

Figure 6. The Prototyping Paradigm and Its Relationship to the Conventional
Software Development.

(From Agresti, W.W. (1986b), What are the New Paradigms? In Agresti, W.W.
(ed.).New Paradigms for Software Development, . Washington, DC:

IEEE Computer Society.)

Prototyping a software system shares one crucial aspect with prototyping in other
engineering disciplines -- when does the iterative modeling process stop? Well-
understood guidelines must be established that determine when the difference
between iterations is so small as to signal a shift to the next phase of the software life
cycle. It is not uncommon for a user to avoid making the decision that the model
satisfies the requirements. Strong managers who understand the software
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development process, are fluent in a wide area of information systems, and who
know when and what to prototype and when to stop are required to successfully
apply the prototyping paradigm.

According to Carey & Mason (1983), the benefits of prototyping fall into three
categories: improved functional requirements, improved interaction requirements,
and easier evolution of requirements. In the first category, the prototype reduces
distortions in the developer's interpretation of the user's needs and uncovers errors
in functional logic. Improved interaction requirements pertain to the design and
use of the user interface; users may have failed to correctly specify how an operation
is performed, they may have difficulty understanding terminology used in the
interface, or they may need help information. Evolution of requirements is needed
where a pattern of use cannot be predicted until a level of experience is achieved.

Design decisions are made in developing the prototype. Detailed, downstream
decisions are made in converting a prototype to the final version.

3.1.2. Operational Specification

A traditional requirements specification describes what a system should do; the
design process describes how it should be done. The "what" and "how" are separated
by the distinct phases of the waterfall model, e.g., requirements analysis and design.
This separation has ramifications for both phases; during analysis it is frequently
imperative that design and implementation considerations be discussed, and design
decisions frequently impact requirements specifications negatively. An operational
specification attempts to resolve this problem. It is a model of the system, a
refinement of a prototype, that can be executed to evaluate the functional behavior
of the system, although not necessarily using the same media used in the delivered
system (Figure 7). The emphasis is on resolving problems related to the behavior of
the system in terms that are understandable to the user. After the executable
specification has been prepared to everyone's satisfaction the implementation-
oriented issues can be addressed without the burden of changing requirements.

Benefits of the operational paradigm can be summarized as a clear separation of the
development process into problem-oriented and implementation-oriented phases,
and the provision of an executable model that can be used to clarify and validate
user requirements early in the life-cycle.

3.1.3. Transformational Implementation

Much research attention is being given to the transformational implementation
paradigm illustrated in Figure 8. The transformational implementation paradigm
adds executable formality to the operational specification. Automation is employed
to apply a series of transformations to a specification to produce a deliverable
software system. Modifications and enhancements to the system are accomplished
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by changing the specification and reapplying the transformations; code modification
is eliminated (Agresti, 1986).

Transformational implementation requires both formality, to express the
specification in a way that transformation rules may be applied, and
understandability, so that users can validate that it meets their requirements. This is
a significant challenge. The transformational phase shown in Figure 8 must be
level-reducing so that detailed design issues such as data structures and algorithms
may be introduced. In implementing a transformational environment there is a
tradeoff between the work performed during development of the formal
specification and the effort entailed to transform the specification into a real system.

Figure 7. The Operational Paradigm.
(From Agresti, W.W. (1986b), What are the New Paradigms? In Agresti, W.W.

(ed.).New Paradigms for Software Development, . Washington, DC: IEEE Computer
Society.)

The formal specification is the system baseline. It is validated as to its representation
of user requirements, and maintenance is performed at its level of abstraction.
System code is modified as a two-step process. First changes are made to a "formal
development" that is a record of the sequence of transformations and decisions that
were made to transform the specification into the original code. Second the
modified formal development is re-transformed to produce the next generation of
the system.

The transformational paradigm produces three products:

• A formal specification.
• A delivered system.
• A formal development record.
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Figure 8. The Transformational Paradigm.
(From Agresti, W.W. (1986b), What are the New Paradigms? In Agresti, W.W.

(ed.).New Paradigms for Software Development, . Washington, DC: IEEE Computer
Society.)

The three paradigms discussed above are related. The formal specification is
essentially equivalent to the operational specification. The transformational process
is an automated view of the refinement of the operational specification. The
operational specification is in essence a prototype. These paradigms are obviously
built around the common themes of delivering an executable model for the users to
examine early in the development process, and providing a framework onto which
automation can be hung.

3.1.4. Evolutionary Software Development

Yeh (1990) proposes a comprehensive Evolutionary Software Development (ESD)
paradigm in which a number of advanced concepts work together to achieve
effective software evolution. Yeh's proposal is an elaboration of the above
transformational paradigm. He expands on the transformational aspect by
distinguishing functional prototyping and performance modeling.

Yeh establishes his paradigm by defining a process model and outlining the
methodologies, tools and languages that are needed to support it. The ESD process
model is shown in Figure 9. An objective is to support both incremental delivery
and maintenance within the traditional phased approach. Fundamental to this
model is a "precisely interpretable" functional specification that depends on
abstraction to hide details of database structures, the orders of executions, and
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algorithms, i.e., to incorporate data, control and functional abstractions. A precise
functional specification makes it possible to incorporate rapid functional
prototyping, performance modeling, and design testing into the design and
development process rather than as attachments to it. Code is synthesized at the
highest level of specification by the way of direct transformation, or through the use
of previously developed components and subsystem designs. System design occurs
as a series of functionality-preserving transformations applied to the original
specification with the choice of transform determined by performance, error
handling and other objectives. Maintenance is done by modification and then
transformation of the original specification.

The ESD methodological framework is distinguished from the traditional waterfall
model by its emphases on:

• Risk management rather than document management.
• Mixed-level representation permitting simultaneous development.
• The separation of evolutionary enhancement from maintenance.
• Automatic code generation from the functional specification.

Of particular note is the emphases on evaluation and validation -- risk
management. Rapid functional prototyping is incorporated by direct generation of
executable code from the functional specification and is used to model and exercise
the logical capabilities of the system. Performance modeling is incorporated to
provide accurate performance analysis and evaluate different design options.

Figure 9. New Paradigm for Software Evolution.
 (From Yeh, R.T. (1990). An Alternate Paradigm for Software Evolution. In Ng, P.A.

& Yeh, R.T. (eds.). Modern Software Engineering: Foundations and Perspectives.
New York, NY: Van Nostrand Reinhold.)
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The ESD paradigm must be supported by two languages: a specification language and
a design documentation language. The specification language must be executable,
and must be unambiguous, simple, capable of describing the logical system
behavior, and able to accept incomplete specifications. To address simplicity, a
graphical syntax is recommended. This would be a natural extension of people's
tendency to describe system structures graphically.

The design documentation language is needed to capture all the design decisions
made during the design process. It must have the ability to specify alternate designs,
module interconnection and hierarchical structure.

Yeh requires that the environment needed to support the ESD methodology must
include:

• "A collection of tools for building, modifying, testing and documenting the
components of the target system."

• "A user interface through which the designer can create, modify, and view
components of the target system."

• "A database system that manages all components that make up the target
system."

Yeh talks about the design process but, in effect, the activity of design is done first at
the specification level and then at the implementation level. The design is dynamic
and is accomplished by successive specification revisions or purposes of logical
improvements, performance improvements, extensions and maintenance. There is
a specification language for prototyping functions and a design documentation
language for performance modeling. The design documentation will be represented
in the object oriented database.

It is significant that an object-oriented DBMS is recommended by Yeh as the most
suitable choice for the ESD. Yeh's recommendation is based on the fact that an
object-oriented database is naturally hierarchical (top down) whereas a relational
database can achieve this only through elaborate constructions using joins.

The advantages of the ESD paradigm are:

• Improvements, extensions and repair are handled in the same way. Maintenance
does not need to be mixed with evolution.

• Evolutionary development is placed in the context of the traditional phased
development.

• Evaluation and validation are also incremental and are incorporated into the
design process.

• The design process is automated and code is synthesized from specifications.
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3 .2 Programming Paradigms

The above paradigms are software development paradigms. That is, they were
conceived to address the needs of modern life-cycle software development, and no
specific software language dictated their essentials. The following two paradigms are
programming paradigms. They are described here because they enforce a model of
programming that differs significantly from conventional procedural programming
and software development paradigms are needed to accommodate their particular
view of design and coding. It is also feasible that a software development
environment can be developed around these paradigms that is intended to produce
conventional software. This is indeed the case with the knowledge based paradigm
that is described below. It is also the case with Yeh's (1990) application of an object-
oriented database in his ESD paradigm.

3.2.1. Knowledge-based

Newer software development paradigms tend to rely heavily on tool rich
environments in which users and designers can interact with models and
prototypes. The Artificial Intelligence (AI) community has long worked in a
community with integrated environments supporting the AI programmer. AI
languages, such as LISP and Prolog, are often interpretive, and AI programs tend to
abolish distinctions between data and programs. These characteristics have led to the
blurring of the boundary between the operating system and application programs.
The AI style of programming builds tools upon tools. Furthermore, AI applications
tend to be processing-intensive; thereby leading to an environment in which each
analyst has his own workstation.

These characteristics of AI environments are now prevalent among a wider range of
communities, and have much to do with the development of newer software
development paradigms. The tools accompanying new software development
paradigms can incorporate a varying amount of software engineering knowledge. A
particular style of software development using knowledge-based tools constitutes
the knowledge-based paradigm. This style can be combined with several software
development paradigms, but it fits most comfortably with the transformational
paradigm.

In a knowledge-based paradigm, the user's needs are captured in a specification or
prototype developed upstream. Knowledge-based tools may assist in developing this
specification. These tools would then contain both software engineering knowledge
and application domain knowledge. This knowledge can be described as
representation knowledge since it is knowledge about the representation of what a
system does, but not how it performs these functions. The Knowledge-Based
Requirements Assistant (KBRA), a part of Rome Laboratory's Knowledge-Based
Software Assistant (KBSA) (Czuchry, 1988) and Refine (Markosian, 1990) are
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examples of knowledge-based tools that contain representation knowledge to assist
in designing a specification.

In a traditional approach, designers convert specification to source code. Their
rationales for the decisions they make are typically not captured in design
documentation. The results of design decisions are captured in the source code, but
in an often obscure manner. Usually, design considerations cannot be recovered
from the source code. Maintenance is performed on the source code. The source, the
requirements as embodied in the specifications, and the design quickly diverges,
with consequences for cost and quality during both development and maintenance.

In the knowledge-based approach, design decisions and their rationale are captured
by the environment. Indeed, the ideal knowledge-based environment would
automatically translate the specification to source. Knowledge about how to
implement a specification and the design processes are encoded in a knowledge-
based environment. The knowledge-based approach is based on the supposition that
this transformation must be done by AI tools. Currently, a specification cannot
simply be compiled into source in some third generation language such as
FORTRAN or C.

This ideal is not yet realizable. Human intervention is needed in the process of
converting specifications to source code. Even so, a knowledge-based environment
captures these interventions and the design decisions behind them. Human
designers and AI programs cooperate in producing the design and source code in a
highly complex and interactive manner. Maintenance is done using a knowledge
based environment related to the one used during development. Requirements
changes are made at the specification level, and the derivation of the source code is
replayed.

A knowledge-based approach will have consequences in both development and
maintenance. A side-effect of the required formality in translating specifications to
source code is a proof that the program meets its specifications. The design will be
more "pure." The resulting program will therefore be of better quality.

Since the specifications are changed during maintenance, a single change will be
more expensive than under a traditional approach where only source code is
maintained. Over a long run of operations and maintenance, the maintenance cost
will be lower. The software will retain its design longer, and its entropy will increase
at a slower rate as compared to the traditional maintenance process.

The knowledge-based paradigm incurs the majority of development costs up front
and presumes a development approach with heavy user involvement i n
requirements analysis. Requirements are the most troublesome area in modern
software developments. The knowledge-based paradigm provides tools to attack this
problem area. The designer is provided with substantial support. Many low-level
decisions are taken care of automatically, leaving the designer free to concentrate on
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the higher-level decisions that have the greatest impact on the end-product. Even
here, the environment provides guidance. It also allows the consequences of
different design decisions to be more easily examined. Thus, knowledge-based
environments, when implemented, will lead to a dramatically different role for
design in some software development paradigm quite different from the
conventional waterfall one.

3.2.2. Object-Oriented Technology

Object-Oriented (O-O) technology is one of the latest approaches to software
development, and it shows much promise in solving the problems associated with
building modern information systems. Prototyping is an important aspect of design
when systems employing object technology are built but, since it involves a whole
new way of thinking about software development, most authorities in the software
engineering community consider object technology as a paradigm itself. It is a
programming paradigm that can best be applied with development tools that are
compatible with it. O-O technology contains these three key aspects:

• Objects: Software packages designed and developed to correspond with real-
world entities and containing all the data and services required to function as
their associated entities.

• Messages: Communication mechanisms are established that provide the means
by which objects work together.

• Methods: Methods are services that objects perform to satisfy the functional
requirements of the problem domain. Objects request services of other objects
through messages.

• Classes: Templates for defining families of objects and all the data and services
that are common to them, and providing for the concept of inheritance that
makes O-O software easier to modify and maintain than conventional software.

Within the context of the traditional waterfall model, O-O provides a common
language throughout the stages, reducing the barriers and enhancing the process
(Taylor, 1992). Referring to Figure 10, objects defined during requirements analysis
become system objects during design, which are then implemented during
programming, and are maintained during evolution.

Object technology, however, is not usually employed following the waterfall model;
rather, a prototyping paradigm is more suited. Using layers of "tried and true"
modules and very little new construction, new applications are assembled with
rapid prototyping. The prototype is the working program, and it is modified,
extended and refined until it meets the requirements. The traditional approach with
all its beneficial controls is still frequently applied to the generation of each of the
classes and modules that make up the libraries. As with moving to any radically
different technology, there is a price to be paid. To take advantage of O-O technology
new development software must be acquired, development personnel trained,
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libraries of components must be assemble (or purchased), and organizations need to
be educated about the technology.

There is no real separation between analysis and design when applying object
technology. During analysis, potential system objects are identified along with their
characteristics and relationships. These objects are maintained through design and
coding activities by adding design detail.

Figure 10. A Common Language for All Stages.
(From Taylor, D. (1992). Object Oriented Information Systems. New York, NY: John

Wiley & Sons, Inc.)

There are few automated tools and no standard notation for accomplishing these
steps, although some work is being done (Coad & Yourdon 1991) based on entity-
relationship diagramming. Similarly, there is no standard notation for expressing a
software design once the requirements are known; however, work is being done i n
this area and several solutions are being offered that either leverage off entity-
relationship modeling, the Ada process model, or are completely new.

The benefits of object-oriented development as claimed by its proponents are many:

• Emphasis is on understanding the problem domain.
• The concept of objects performing services is a more natural way of thinking.
• Internal consistency of systems is improved because attributes and services can be

viewed as an intrinsic whole.
• The characteristic of inheritance capitalizes on the commonalty of attributes and

services.
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• The characteristic of information hiding stabilizes systems by localizing changes
to objects.

• Object are inherently reusable.
• The object-oriented development process is consistent from analysis, through

design, to coding.

3.3 Examples of Contemporary Design Methods

This section describes a spectrum of recent design tools (or software development
methodologies that include design) which have attempted to solve some of the
weaknesses of historic software design technologies. Representative of this list is
HIPO II which makes no grand claims about new paradigms but is a commendable
extension of a 1970's technology, and the Knowledge Based Software Assistant
(KBSA) which is an automated, life-cycle development methodology which takes
advantage of expert systems technology.

3.3.1. HIPO II

As described by William Roetzheim in his book Structured Design Using HIPO-II
(1990), Hierarchy Plus Input-Process-Output II (HIPO-II) is a new software design
technique that integrates software design products with:

• Project management.
• User requirements for prototypes.
• Programmer requirements for clarity, consistency and convenience.
• Systems analyst requirements for flexibility and power

Roetzheim believes that the advanced CASE tools based on data flow and entity-
relationship diagrams are not as easily understood as the HIPO design technique. He
concedes that, although IBM's original HIPO had serious flaws that caused it to fall
out of favor, HIPO-II competes with the most advanced design methods while
maintaining its original simplicity. He asserts that HIPO-II exhibits three essential
qualities that must be possessed by any structured approach to software
development:

• Consistent - yielding predictable results under many circumstances
• Logical - based on validated theories, heuristics and algorithms
• Teachable - involving step-by-step actions that can be readily understood.

Roetzheim finds fault with software design methods that deal principally with the
needs of the systems analyst. He stresses that software design affects four significant
groups that must both approve of and benefit from the design method used. These
groups are the following:
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• Project Managers -The method must support the decomposition of the system
into work packages from which schedules, work assignments, cost estimates, and
risk estimates can be derived.

• End Users - The method should produce documentation that is clear and non-
intimidating to end users with little or no training.

• Programmers - The method must produce clear, unambiguous designs.
• Systems Analysts - The method must be powerful, flexible and easy to use; it

should support graphical techniques, recognize a wide variety of module types
(menu, interrupt, common, etc.), should facilitate rapid creation and
modification of designs, and include sufficient level of detail.

HIPO II adds the following enhancements to the original HIPO:

• Different module types are supported. The single class of functional models has
been expanded to include menu interaction, interrupt handling, keyboard
interaction, common modules, and library modules.

• Built-in Prototyping.
• Control flow graphics including sequence, alteration, iteration, concurrency, and

recursion.
• Pseudo-code algorithm descriptions.
• Global database design.
• Input-Process-Output (IPO) charts have been reformatted to match typical

module internal headers formats.
• Interface to project management software.
• Low cost CASE support is available.

Vertical hierarchy charts are used in HIPO-II. Figure 11 depicts sample HIPO-II charts
for processing modules. These charts are clear, can represent many levels of
decomposition, are easy to change, can easily be represented on both computer
workstations and printers. The benefits of the hierarchical decomposition used i n
HIPO-II are these:

• Well suited to stepwise refinement
• Can be presented and reviewed at varying levels of detail
• Well suited to top-down implementation
• Results in programs that are well structured, easy to implement, modify, and test
• Structures are easy to represent on a computer screen

HIPO-II includes built-in support for automatic prototyping. It supports prototyping
of user dialogue, data entry screens, and reports and is especially useful when
developing systems where the user interface is a significant component. Modeling
of accuracy, timing, data flow, etc., is not directly supported by HIPO II. The
prototyping capability does not involve any extra work from the designer; after the
prototype is approved, it becomes the foundation for all later design work.
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Like its predecessor, HIPO-II documents program algorithms in the process portion
of input-process-output charts; however, these are now improved with the addition
of control flow information in the hierarchy charts. There are five control flow
constructs depicting sequence, alteration, iteration, concurrency, and recursion that
can be added to the charts.

Program
Alpha

Init sys Get choice Process 1 Process 2

Cir
screen

Disp
menu

Get 
selection

Disp
error

Init
Printer

Open
file

Allocate
RAM

Get 
record

Process
record

1 2 3 4

2.1 2.2 2.3 2.4

1.1 1.2 1.3 3.1 3.2

Figure 11. Sample Hierarchy Showing Processing Modules.(From Roetzheim, W.H.
(1990). Structured Design Using HIPO-II. Englewood Cliffs, NJ: Prentice Hall, Inc.)

Freeform, compact, efficient pseudo-code, or structured English, is used to represent
detailed module algorithms. An example, taken from Roetzheim is the following:

If the track speed is less than 25 Knots, call the routine to update the
Kalman filter variable becomes:

If (track.speed < 25) update Kalman filter

For the design of data structures and flow, HIPO-II corrects another deficiency of
HIPO by including provisions for designing global data structures. A hierarchical
format (similar to those used in functional decomposition) is used to describe
variables and data structures accessible from all program elements.



31

Roetzheim believes that HIPO is the most easily understood design technique ever
developed and that the HIPO II enhancements allow it to "compete with even the
most extensive 'modern' design techniques while still retaining the charm and
simplicity of the original technique." It is a classical structured approach and does
not stray far from the conventional life-cycle model, although it does address
prototyping at the user interface level. The most important upgrade from HIPO is
probably the addition of constructs for human interaction and task management
(interrupts). HIPO II can be used for Software Requirements Analysis through
Detailed Design by successive refinements of the design. Webster (1988) would
classify it as an upstream design method. The Structured Designer's Tool Box is a
low cost CASE tool for IBM compatible PCs that implements the HIPO-II software
design methodology.

3.3.2. Object Oriented Design

Coad and Yourdon (1991) introduce a method for Object-Oriented Design (OOD) i n
their book of the same title. This book is a companion to their previous book
"Object-Oriented Analysis" (1991). The OOD reference specifically states that the
method is for the middle ground between software requirements definition and
coding. In the context of the upstream-downstream scale of software design, this
OOD method is just downstream.

The OOD method is, of course, an extension of Coad and Yourdon's OOA method.
Their OOA method uses a graphic representation with seven constructs as follow:

• Subject - A convenient partitioning of a software system into related problem
domains. The subject is comparable to the definition of a DoD Computer
Software Configuration Item (CSCI).

• Class - A description of one or more objects providing the same services (e.g. an
automobile moves you from one location to another) and defined by the same
attributes (e.g. color of an automobile).

• Class-&-Object - A class and all the objects in that class.

• Gen-Spec Structure - A Gen-Spec structure is recognized when a Class-&-Object
can be specialized by inheriting attributes or services from a more general class,
e.g. the class helicopter can inherit properties from the class aircraft.

• Whole-Part Structure - A Whole-Part Structure is recognized when both a
system and a component of that system are important to the problem domain
and can be abstracted as a Class-&-Object. An example of a whole-part structure is
an automobile and its engine, i.e., an object in the class automobile may be a
brand of automobile and that brand may have several engine options.
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• Instance Connection - An instance connection is used to represent relationships
between objects. For example, a system for tracking automobile registrations
must make a connection between a person (the owner) and the owned
automobile. In this case the person and automobile Class-&-Objects have their
own attributes, but one cannot exist without the other.

• Message Connection - A message connection is used when one object may need
to request the services of another object.

Coad and Yourdon's graphical representation of these constructs are shown i n
Figure 12.

To accomplish the act of analysis these constructs are mapped into five vertical
layers or activities:

• Identifying Subjects
• Identifying Class-&-Objects
• Identifying Structures
• Defining Services
• Defining Attributes

Coad and Yourdon's methodology uses the same notation for analysis and design,
and they point out that this is one of the advantages of the O-O paradigm. For
accomplishing the act of design, they identify four horizontal components of
software systems:

• The Problem Domain
• Human Interaction
• Task Management
• Data Management

These components should be self explanatory except, perhaps, task management
that addresses systems that must deal with multi-users, multi-processors, or external
events, including timing signals (e.g., real-time systems).

While the particular design concerns of each of these components are discussed i n
detail by Coad and Yourdon, the design method is, in essence, a matter of
subdividing the constructs identified by the analysis into the four components and
adding detail as necessary to begin coding. The result is a matrix filled out with five
activities versus four components.

OOA Tool and OOD Tool are drawing and checking tools for this method. These are
available from Object International, Inc. of Austin, TX.
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Figure 12. OOA Notations.
(From Coad, P. & Yourdon, E. (1991). Object-Oriented Analysis Englewood Cliffs, NJ:

Yourdon Press.)
3.3.3. Gist

Gist (Balzer, 1982) is an example of a language appropriate for implementing
operational prototypes. A specification in Gist, intended to be a "cognitive model" of
a system, defines a collection of behaviors of the system. The specification is a closed
model, so hardware and human users are described by the specification, as well as
the software that will be implemented. Gist provides certain specification freedoms
so the description of what a system does is free from considerations related to how it
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performs the specified operations. For example, the data model embodied in Gist
assumes all needed data is immediately available.

A Gist specification consists of three parts: structural declarations, stimulus-response
rules, and constraints. The structural declarations consist of definitions of types,
instances of types, and the relationships between objects of each type. These
definitions define the state space of a system. They permit the remainder of a Gist
specification to use a language appropriate for the application domain. The
stimulus-response rules define situations and the range of behaviors resulting from
these situations. Gist specifications can be non-deterministic. A specified system is
permitted to be in a state in which several stimulus-response rules can be triggered.
The constraints prune the state space and the behaviors defined by the other parts of
the specification.

A Gist specification is produced upstream in the life-cycle during either system
requirements and design, or software requirements. It allows more precise and
rigorous requirements analysis. The specification is more likely to be complete and
meet the users needs than is the case when non-formal methods are used. Given
that the distinction between requirements and high-level design decisions is not
precise, the development of a Gist specification can be seen as a part of design. The
resulting design product is the Gist specification. Low level design decisions should
be easier to make when requirements are more clearly established through an
operational specification or prototype.

An interesting consideration is how design decisions abstracted by the specification
affect the specification. For example, the Gist specification does not distinguish
between those portions of the system that will be implemented in hardware, that
will be software, and that will not be implemented at all (for example, user
decisions). All of these aspects of the system appear in a closed model of the system.
Consequently, the system may be incapable of being implemented if constraints are
specified on the user that the implemented portion of the system has no way of
enforcing. Similarly, the freedom to ignore details about how data is implemented
may lead to an unimplementable system. Requirements and specification decisions
are therefore intimately intertwined with tacit design decisions. Since requirements
stability is a major problem for both software design and software development as a
whole, Gist and the operational specification paradigm address an important
software design issue.

3.3.4 Cleanroom Methodology

The Cleanroom methodology (Dyer, 1992) is an iterative, life-cycle approach focused
on software quality, especially reliability. Begun by Harlan Mills, it combines formal
specifications, structured programming, formal verifications, formal inspections,
functional testing based on random selection of test data, software reliability
measurement, and Statistical Process Control (SPC) in an integrated whole. SPC,
commonly used in manufacturing, involves continuous process monitoring and
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improvement to reduce the variance of outputs and to ensure the process remains
under control.

The Cleanroom approach fosters attitudes, such as emphasizing defect prevention
over defect removal, that are associated with high quality products in fields other
than software. Figure 13 shows a possible order for introducing Cleanroom
component technologies.

Cleanroom development begins with requirements. Specifications ideally should be
developed in a formal language, although the Cleanroom approach allows the level
of formality to vary. Cleanroom development is an example of an iterative life-
cycle, and incremental releases are used in implementing SPC. The specification is
structured to explicitly identify successive releases. Cleanroom-developed
specifications also include:

• A target reliability for each release in terms of Mean Time Between Failure
(MTBF)

• The operational profile for each increment, that is, the probability distribution of
user inputs to the system.
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Figure 13. A Road Map for Introducing Cleanroom Technologies

Once a specification is produced, the design, coding, and testing phases are repeated
in an iterative style. This process, a combination of the evolutionary prototyping
and a type of non-automated transformational paradigm, is illustrated in Figure 14.

The design and coding phases of Cleanroom development are distinctive. Designers
develop proofs of correctness, along with their designs and code. These proofs are
intended to be human-readable and serve a social role instead of being checked by
automated verifiers. Concurrent development of proofs helps guide design and
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inspections. Formal inspections (Fagan, 1976) are emphasized, and formal
correctness proofs are presented at these inspections. Mills recommends the design
follow a formal method based heavily on mathematical functions and sets.
Programs are described as a hierarchy of functions, and heuristics are provided to
develop designs in a top-down fashion, verify they meet their functional
specifications, and recover the function from the design. Mills claims this design
method scales up for large systems better than competing formal verification
approaches based on assertions, preconditions, and post-conditions (Linger, 1979).

Figure 14. The Cleanroom Life-cycle.
(From Dyer, M. (1992). The Cleanroom Approach to Quality Software Development,.

John Wiley & Sons, Inc.)

The design process is intended to prevent the introduction of defects. In keeping
with this philosophy, the Cleanroom methodology includes no unit or integration
testing phases. In fact, coders are forbidden to compile their programs, and programs
are placed under formal configuration management before the first compilation.
Cleanroom development takes its name from just this aspect of the methodology.
Testing is completely separated from the development process, and designers are
unable to adopt the attitude that quality can be tested in. Instead, they must produce
readable programs that can be convincingly shown correct by proof.

Testing does play a very important role in Cleanroom development. It serves to
verify that reliability goals have been met. Given this orientation, testing is



37

organized differently than in traditional methods. Testing consists entirely of
functional testing in which inputs are randomly selected from the specified
operational profile. Although bugs are removed when detected, the testing group's
responsibility is not to improve the product to meet acceptable failure-rate goals.
Rather, testing exists to perform reliability measurement and certification.

When testing fails to demonstrate the desired reliability goal is met, the design
process is altered. The level of formality may be increased, more inspections may be
planned, or analysts may receive additional training. By combining testing, feedback
into the design process, and incremental builds, the Cleanroom methodology tailors
SPC to software. As is also evident, the methodology embodies SPC in an
institutional structure designed to foster a "right the first time" approach. Methods
that have proved themselves in manufacturing quality are thereby adapted to
software. The Cleanroom approach has been in existence since 1980 and shown
demonstrated effectiveness in trial implementations, but it is not universally
accepted among software developers and designers. Inasmuch as Cleanroom draws
upon evolving concepts of the best practice in software, it will certainly influence
other integrated life-cycle approaches developed in the future. At the very least,
future software development methodologies are likely to adapt Cleanroom
component technologies, including the design approach of structured programming
combined with functional verification and formal inspections.

3.3.5. Leonardo

Leonardo is a comprehensive design support environment being developed under
the Microelectronic and Computer Technology Corporation (MCC) Software
Technology Program (STP). Leonardo is central to the STP's plan to fulfill their
mission of providing an "extraordinary increase in productivity of development
and quality of software" for MCC shareholders (Belady, 1990).

MCC performs long term industrial research with an emphasis on continuous
technology transfer. Consequently, the STP must account for future trends i n
software development and not just current events. It is planned that Leonardo will
support teams designing large systems and not just individual designers. It is also
recognized that networked computers, especially workstations, are becoming ever
more pervasive and Leonardo will be oriented towards the design of distributed
systems with both hardware and software components.

MCC empirical studies have been used to identify problem areas in design (Curtis,
Krasner and Iscoe, 1988). Findings conclude that upstream requirements and design
decisions have a significant influence on software productivity, quality, and cost
throughout the life-cycle and that successful projects are frequently associated with
exceptional designers. These designers are individuals who are able to combine
broad application knowledge with an ability to identify unstated requirements,
model the interaction of a system's components, and communicate their technical
insights in both application and computer science terminology to both the customer
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and other analysts. The MCC empirical studies established that productivity and
quality are more related to interpersonal communication, team coordination, and
design ability rather than to the programming performance of individuals.

Leonardo is being designed to account for the role of upstream activities and their
predominant impact on total system cost. It is assumed by Leonardo developers that
good design is dependent on human creativity which can be made more efficient
with automated support. Leonardo is largely paradigm-independent. It is being built
following a bottom-up research strategy that will produce separate components
which can be easily transferred to MCC shareholders after completion. The eventual
target is a "coherent environment," not a monolithic package that needs to be
adopted in one fell swoop. Currently, Leonardo is a research project, not an existing
environment.

3.3.6. KBSA

In 1983, it was proposed to the U. S. Air Force's Rome Laboratory (RL, formerly
Rome Air Development Center) that a Knowledge-Based Software Assistant (KBSA)
be created (Green, 1983). A RL research program was begun, and RL hosted annual
conferences on Knowledge-Based Software Engineering to encourage technical
interchange among KBSA researchers, the latest being in 1992 (KBSE, 1992). This
research program provides an early exemplar of a knowledge-based,
transformational approach to software development with an interesting role for
design. The KBSA now exists in the form of a demonstration prototype suitable for
exhibiting important concepts in the knowledge-based approach to software
development.

The knowledge-based software engineering model is illustrated in Figure 15. The
KBSA supports an analyst in developing a formal specification. Rules are encoded
in the KBSA as is typical in an expert system. These rules record expert knowledge
about the domain for which an application is being developed and about software
engineering practices. The formal specification is executable, thereby serving as a
prototype that can be validated by the user. Once the specification is complete, it is
automatically transformed to source code. Any design decisions made by the KBSA
in this step are recorded. The designer may have to provide some inputs to tune the
final source program. These inputs are also recorded. Any requirement changes to
the software during operations and maintenance are made by first modifying the
specification and then automatically re-deriving the source code using the decisions
recorded in previous transformations.

Design decisions are made at two stages in this process, which is quite different from
the traditional waterfall model. Downstream decisions are made in transforming
the specification to source code and in tuning the result. The KBSA attempts to
automate these decisions as much as possible, thereby minimizing human
involvement. The goals of the optimization process (e.g., minimize space or time)
must ultimately come from the designer or domain knowledge, but the detailed
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implementation of a design satisfying these goals will become increasingly
automated.

Less automation is possible for upstream decisions during the requirements analysis
phase, but the KBSA gives the expert designer powerful support. The KBSA can
automatically deduce the consequences of the interactions of many design decisions.
Furthermore, some more obvious decisions will be automated in the KBSA. The
KBSA automates lower level details, freeing the designer to concentrate on
analyzing the many tradeoffs possible and the implications of alternate designs for a
system.

Figure 15. The Knowledge-Based Software Engineering Process.
 (From Bailor, P.D. (1992). Educating Knowledge-Based Software Engineers.

Proceedings of the Seventh Knowledge-Based Software Engineering Conference,
McLean, Virginia, September. 20-23.)

3 .4 Software Design and CASE Technology

Integrated - Computer Aided Software Engineering (I-CASE) environments provide
a coherent set of automated tools to assist software developers in coping with large
complex systems and enforcing a disciplined life-cycle engineering approach. I-CASE
can be considered an implementation of a software development paradigm.
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Since design methods are necessarily a part of I-CASE, it is of value to discuss
current trends in these technologies. Mimno (1990) identifies four advances i n
technology that are converging to produce a whole new generation of CASE tools
that are fundamentally changing the life-cycle process. These are:

• Major improvements in human interface capabilities including the use of
intuitive command interfaces, elimination of alien syntax, and extensive use of
graphics.

• The availability of CASE tools for networks and intelligent desktop workstations
including PCs.

• The utilization of front-end graphical design techniques that are amenable to
automatic analysis.

• An increasing use of expert system shells and a knowledge base of inference
rules.

Mimno further partitions technically advanced CASE products into the following
components:

• Front-end diagramming tools for Computer Aided Design (CAD) which allow
analysts to create, verify and revise drawings on the screen interactively. These
tools can support diagramming techniques compatible with a variety of
development models including modern techniques based on formal
information models and older, manually oriented structured engineering
techniques.

• Design analyzers that are used to detect internal inconsistencies, ambiguities, and
incompleteness in the design specifications.

• Code generators that automatically generate code from consistent design
specifications. A very tight coupling between the front-end CASE tool for
entering and checking specifications and the back-end code generator is required.

• A central repository that contains a library of functions, processes, procedures,
etc., and a database of pure specifications that can be viewed in a variety of
consistent graphical formats. Sufficient detail is maintained in the specifications
so that code can be automatically generated from the specification. The repository
is also important as a central database for large development teams.

• Expert Systems which apply inference processing to a knowledge base containing
data and rules about the organization, development process and the application.

• Methodologies which enforce a standardized approach to the design and
implementation of systems, and guide the analyst through a disciplined
application of the CASE tools

• Life-cycle support where manual steps are minimized and code generation is
tightly coupled with design automation.
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No current CASE tools can strongly claim to have all these pieces in place. Most
products support only low level code generation facilities like screen maps and data
layouts for external languages such as COBOL, C, BASIC and PL/1. While there are
code generators that work from user-supplied specifications, they generally do not
support the degree of integrated functionality or data base management capability
provided by fully integrated CASE tools or 4GL application generators, and they are
generally not user friendly. Mimno (1990) discusses a system named CorVision
marketed by the Cortex Corporation as an example of a product that supports all
phases of the application development life-cycle, but it produces 4GL code rather
than an efficient language code.

The direction for advanced I-CASE products appears to be the automatic generation
of code from logically consistent and complete graphical specifications. Note that
this echoes the idea of the transformational paradigm discussed above. This
promises a future where the human component of software design will likely be
most prominent at the specification level (upstream), while detailed design
activities will be become more automated. There is also an emphasis on visual
programming in that a specification is constructed out of graphic symbology that can
then be converted directly to code. This uses visual perception, one of humankind's
greatest strengths, to greatest advantage.

Advanced I-CASE must also provide prototyping tools for creating models of the
system that help define and clarify user requirements. These tools must be
integrated with upstream design activities to support direct end-user involvement.
The prototype must be at a level of abstraction that the end-user understands,
implementing screens, menus, reports, decision trees, procedural logic, and other
elements that are recognizable by the user.

3 .5 Software Design "In the Large"

When considering software design methods, it is easy to see software development
as a personal challenge and to think strictly in terms of a software process model.
This is fine for a small system that can be efficiently and correctly developed by a
single individual but it is not sufficient for a large system where teams of people
must work in a coordinated fashion and eventually integrate their work on
different parts of the system. This requires organizational management and its
attendant social processes. Software tools designed to aid the individual
programmer, even in the context of a large project, do not usually provide the
functionality needed to deal with this larger social context. This section focuses on
large systems and their influence on software design methods.

In a study conducted for the MCC Software Technology Program, Curtis, Krasner
and Iscoe (1988) identify the three most influential problems of software design " i n
the large" as:
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• "The thin spread of application domain knowledge
• "Fluctuating and conflicting requirements
• "Communication and coordination breakdowns"

The study found that a deep understanding of the problem domain was necessary to
the success of the project but that this was typically a scarce commodity in the
development organization. It was evident that a systems view which sees the
computer as an element of a system and not the end product must be accessible to
the development team(s). It was proposed by Curtis et al. that access to good domain
models is a serious obstacle to the success of automatic programming systems.

The reasons cited for fluctuating requirements were numerous but the concern of
system engineers was unresolved design issues and the tools needed for tracking
their status. The ratio between issues resolved and issues recorded was thought to be
an important measure of design stability and design progress.

The study discovered that many communication activities that appeared to be good
software engineering practices were unworkable when scaled up for large projects,
and that written documentation poorly served communication needs. In the end,
verbal communications served the project best if the development organization was
able to develop a common representational convention. It was found that, to foster
communications at the project level, the social structure of the project was
sometimes factored into system architectural decisions. That is, the system was
partitioned in a way to reflect the optimal working arrangements rather than the
optimal functional design. A final, important communications issue revolved
around artificial organizational or political barriers that hindered the project
members' access to customers. This contributed to forgotten information, a shallow
understanding of the problem domain, and unstable requirements.

The Curtis et al. study concludes that software development environments must
somehow incorporate behavioral processes along with software development
processes. These behavioral processes can be encapsulated as three required
capabilities: knowledge sharing and integration, change facilitation, and broad
communication and coordination. The availability of application domain
knowledge must be increased across the entire software development staff. Software
development tools and methods must accommodate change as the natural order of
things and provide powerful change management features. Software development
environments must be designed to be a communications media and integrate
information with the tools.

The paradigms and methods described in the sections above support these premises.
This is certainly the case with the Leonardo project since the Curtis et al. study
served as input to this project. In the section on I-CASE, the requirement for a
repository supports both the need for distribution of knowledge about the problem
domain, and the idea that the software development environment should be a
media for communication. The incorporation of expert systems would also assist
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developers in access to information about both the problem domain and the
software development process. A project knowledge base could be populated with
expert knowledge captured from those rare individuals who understand the
project's big picture.

The transformational paradigm manages change at the upstream specification phase
rather than the downstream coding phase thus avoiding the situation where
changes are needed after the specification is formalized. A history of specification
changes is preserved in a formal development record. The emphasis in modern
design methodologies on prototyping and iterative development is an
acknowledgment that change is inevitable.

3 .6 Design Enforcement

Design methods may promote good design but they do not necessarily enforce it. For
example, Coad and Yourdon's (1991) method for object-oriented design provides a
design framework and guidance for working within this framework, but it can not
assure that a good design will be produced by an individual who is uninspired or
under pressure. To be sure that a design properly follows the tenets of the method
and will have those attributes that predict quality software development,
enforcement must be a necessary element of design methods. For development of
software systems "In the Large," enforcement helps to ensure that separately
designed modules will be uniform in technique and compatible.

Good design is distinguished from correctness. A design that is hard to maintain
and difficult to integrate may be capable of producing correct results but its design
flaws may eventually haunt the development project in unpredictable ways. Good
design cannot be guaranteed because there is no all encompassing definition of a
good design, but there are incentives and road markers that can be put in place to
assist a designer in keeping on track. Enforcement is especially important if the
industry continues toward the transformational paradigm where changes are made
at the specification level.

While a level of enforcement could be imposed manually, this would be much
easier to subvert for the sake of convenience, and automation is the goal.
Automation can inject a level of control that could not be casually bypassed by the
software engineer. At the highest level, an automation of the method can enforce
the design paradigm. For example, an object-oriented design tool should force the
user to define an object before the service provided by that object can be defined. At
the next level, design methods should include model checks. This is similar to the
design analyzer mentioned in the section on CASE technology.

Coad and Yourdon (1991) distinguish between errors (a rule that cannot be broken)
and warnings (a rule that can be broken). Error checking appears to overlap the
highest level of enforcement as mentioned above and this kind checking should be
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done dynamically as the design is constructed so that errors never enter the design
in the first place. Warnings, on the other hand, may be issued dynamically or during
a separate process step after the design is completed. Warnings are especially
interesting because they imply the use of measures or heuristics. Measures that
estimate such characteristics as complexity or size may be embedded in the method
to detect possible weaknesses in the design and issue warnings. Likewise rules of
thumb that can be used to advise the designer on good practices can be incorporated
into a model checker. A more powerful model checker that incorporates knowledge
about the application is possible. This idea was implied in the section on software
design "In the Large."

Skill and motivation also enforce good design. Those responsible for design must be
thoroughly trained in the design method and its principles. They must be convinced
of the advantages of the method and that adherence to its tenets will produce a
quality product, make for a successful project, and make life easier for them in the
long run. Standards such as DOD-STD-2167A, or even stricter in-house standards,
can also serve to enforce good design. If an update to a design document is required
as part of the design process, the design change becomes public and the designer is
forced to review his or her work and make sure that certain questions about the
quality of the design have been properly addressed.

In a transformational paradigm where changes are made at the specification level
there should be an elaborate check-in procedure for design additions and changes.
This is similar to configuration management but it goes further because it makes the
designers go through a series of checks before their updates are accepted into the
baseline system. Examples of such checks are verification that the model checker has
been run and that the project leader has reviewed the design update. Such checks
can be supported by automation. A successful run of the model checker may set a
flag that clears the design element for entry into the baseline system. Project leaders
may have special database write privileges that allow them to update the baseline
system with the new design element when they are convinced that the design meets
all the requirements of the system and the method.

In an I-CASE environment, enforcement methods as discussed above must be
coordinated in a way that makes it very difficult, if not impossible, to execute a poor
design. They must be implemented in a way that would force a software designer to
have to make a special effort to circumvent these structures.
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4 .     CONCLUSIONS

At this time, software development appears to be at an important juncture. While
structured design and its related technologies have dominated in the 1980s; research
is now being diverted toward object-oriented technologies. This new direction,
whether justified or not, is likely to pull resources away from future advances i n
structured design and other traditional technologies. The developments of the
waterfall model and structured technologies were important breakthroughs that
have made possible vast improvements in the way we develop and generally think
about software but it is possible that their zenith has passed.

Whether object-oriented technology comes to dominate or not, it appears to be
universally recognized that the most difficult phase of software development is i n
the upstream where the user's requirements need to be pinned down and somehow
encoded for implementation. This is apparent in paradigms like the
transformational model that hopes to prototype or iterate at the specification level
with a very high level language. This is in truth a recognition that this front end of
design requires craftsmanship and the user must be kept in the loop, at least at the
specification stage. The high-level language requirement comes into the equation as
a means to at least partly automate the process and to provide a prototype that is
readily interpretable by the client. Interpretability is needed at two levels. At one
level is the high level design that is needed by people who will perform verification
and validation, or maintenance activities. These people may be part of the client's
organization or a third party organization. At an even higher level of abstraction is
the end-user's viewpoint. Normally the client's end-user will want to see a realistic
representation of a working system and would rarely be interested in interpreting a
diagramming language even if it is at a relatively high level of abstraction.

In Yeh's (1990) Evolutionary Software Development paradigm, system design occurs
as a series of functionality preserving transformations applied to the original
specification with the choice of transform determined by speed, error handling and
other performance related objectives. Maintenance is done by modification and then
transformation of the original specification. Functional prototyping is incorporated
for direct generation of executable code from the functional specification and is used
to model and exercise the logical capabilities of the system. Performance modeling is
incorporated later to provide accurate performance analysis. In the context of
traditional design, functional prototyping represents high level design while
performance modeling represents detailed design.

The recognition that software development should be evolutionary is not
surprising. All advances are made this way and we would not have expected a
modern, aerodynamic automobile to come off Ford's 1927 assembly line. We should
also not expect the first version of a software system to come out of the software
factory without room for improvement, and with all the features that will ever be
needed. That software can be prototyped without a commitment to hardware is its
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greatest strength and the prototyping paradigms are simply combining this strength
with good engineering practices. It is worth noting that specification prototyping is
available today, at least on a small scale. One of the authors has developed
applications on a personal computer using the expert system shell LEVEL5 OBJECT
(1990). This particular shell provides a multi-paradigm environment in that it
supports both rule-based and functional programming in an object-oriented
environment. It also provides a set of graphic objects from which the developer can
quickly assemble a graphic user interface. Use of this system gives an inkling of the
natural way to design software. One starts with the user requirements as they are
known at the moment, probably from interviews, site-visits, meetings, etc., and puts
together a minimal but working system. It is then shown to the customer and his or
her inspired suggestions are incorporated into the next version.

Such cycles of incremental improvements can be repeated as many times as the end-
user has time for, or are necessary to capture previously unstated requirements.
Software components are abstracted at various levels and the customer is able to see
the system at a functional level while the programmer is able to work at the detailed
design or coding level. The development environment is self-documenting and the
developer can display the architecture of the system or the logic in several different
ways. There is no real distinction between designing and coding. Design occurs
when the developer creates an object in the context of other objects, and coding
occurs when the developer installs the service that the object will perform. The end-
user interface is put together with a selection of graphic objects provided with the
shell. Changes in the design or code are easily accomplished and minor end-user
suggestions could be implemented while he or she observes.

As it is with many expert system shells, this particular system is only practical for
developing relatively small, single-user systems. Its interface building tools are
limited and it would be of little value for time critical applications because there are
no facilities for guaranteeing performance goals. It also has no direct facilities to
support projects "In the Large" where many individuals must work in parallel and,
at some point, integrate and test their work. Shells such as the one described provide
tools to encourage good design but they also have few means to enforce good design.
One can easily declare the whole program as an object and fill it with spaghetti code.
A trained and inspired programmer with sufficient time is likely to use these tools
effectively but a programmer under pressure may not. His or her tendency will be to
get the thing working as soon as possible rather than to design first. In summary,
existing development shells provide a model for efficient software development,
but much needs to be added to be able to cope with development "In the Large."

I-CASE represents an automated implementation of a software development
methodology which in itself is a uniform approach for implementing a software
development paradigm. An I-CASE implementation is required to enforce the
tenets of the methodology and to make that methodology, and consequently the
paradigm, realizable for the software development team. Design methods will, of
course, be incorporated into I-CASE as an element of the methodology but, as
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stressed above, the distinction of design as a stand alone activity may no longer be as
valid. In the research above the following themes, which are characteristic of
advanced paradigms, were apparent:

• Front-end diagramming tools: Upstream design or specification should be given
emphasis and be accomplished with diagramming tools and processable graphics.
These processable graphics should be automatically checked for errors and
inconsistencies, and be transformable into functional and performance
prototypes. A variety of diagramming methods that display the specification
from different logical perspectives should be available.

• A customer's vision: The functional prototype should be at a level of abstraction
that allow the system design to be presented to clients as they would visualize it
in use. Yeh (1990) separates this aspect of prototyping into functional and
behavioral (human interface) components.

• Performance modeling:  An advanced I-CASE environment should also provide
means of transforming the specification into a performance prototype. The
performance prototype is a vehicle for verifying that the operational system will
meet performance specifications.

• Consistent internal representation: The methodology should be founded on an
internal representation that is consistent throughout the life-cycle and provides a
common basis for storing information about the system under development.
The front end diagramming tools should reflect this representation.

• A repository: A repository or database is required as part of the implementation
to store the design representation, information about the I-CASE methodology,
information about the application, and information about the project. The
repository should support the multiple graphic representations of the system
design or specification.

• Design "In the Large:" I-CASE must include distributed tools to support large
systems development that requires work to be partitioned among organizations,
teams and individuals. The repository should support distributed development
by providing a common information archive.

• Integration: I-CASE environments must assist in coping with large systems. It
must play an active role in coordinating tasks, milestones and change.

• Features for capturing design issues and tracking status: The I-CASE
environment should have facilities for tracking original implementations and
changes. Changes should be tracked from change-order to integration-and-test.
Evolutionary development and maintenance should be distinguished.
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• Self documentation: System documentation should not be developed as a
separate step but should derive automatically from actions taken to create or
change the software. For example, the graphical specification represents both the
specification and the documentation of that specification.

• Design enforcement: The methodology should have a infrastructure in place to
assist the developer in applying the methodology and to check that the
methodology is indeed being applied correctly and uniformly.

These final points can be made about the state of the art and future directions of
software design methods:

• Because they have a track record and CASE tools are available, standalone design
methods such Roetzheim's (1990) HIPO-II, Yourdon and Constantine's (1979)
Structured Design, and Coad and Yourdon's (1991) Object-Oriented Design are
still of value and will continue to be used for some time to come.

• Future design methods will be incorporated into I-CASE environments.

• Recent advances in I-CASE environments have been made along the lines of
traditional software development methods but there is a wide mix of capability
offered and few, if any, uniformly address the entire software life-cycle.

• Advances in user interface and personal workstation technology will drive both
the form of future applications software and the form of future design methods.

• Object-orientation will influence software design methods in the future.

• Automation combined with new paradigms like the transformational model
will erode the distinctions between requirements definition, design and coding.

• The future emphases on design methods will be at the prototyping and
specification level.

• The expert system development shell paradigm with its strong element of
prototyping provides a valuable model for future I-CASE environments, but
tools for software development "In the large" must be added.
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