

Embedded Software Maintenance
A DACS State-of-the-Art Report

Produced by Fraunhofer Center for Experimental Software Engineering Maryland and
The University of Maryland

By

Mikael Lindvall, Seija Komi-Sirviö, Patricia Costa and Carolyn Seaman

Prepared by:

Data and Analysis Center for Software
775 Daedalian Dr.

Rome, New York 13441-4909

i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any
other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO
THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
31 January 2003

2. REPORT TYPE
N/A

3. DATES COVERED (From - To)
 N/A

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
SPO700-98-4000

A State of the Art Report: Embedded Software Maintenance

5b. GRANT NUMBER
N/A

 5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)
Mikael Lindvall, Seija Komi-Sirviö Patricia Costa and Carolyn Seaman

5d. PROJECT NUMBER
N/A

 5e. TASK NUMBER
N/A

 5f. WORK UNIT NUMBER
N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Fraunhofer Center for Experimental
Software Engineering Maryland and
The University of Maryland, College Park,
Maryland

DACS SOAR 12

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Technical Information Center (DTIC)/AI
8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060
and Air Force Research Lab/IFED
32 Brooks Rd., Rome, NY 13440

10. SPONSOR/MONITOR’S ACRONYM(S)

DTIC-AI and AFRL/IFED

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S) N/A

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution unlimited
13. SUPPLEMENTARY NOTES
Available from: DoD Data & Analysis Center for Software (DACS)
PO Box 1400, Rome, NY 13442-1400
14. ABSTRACT

The goal of this report is to describe the state-of-the-art of embedded software maintenance and provide a glimpse of state-of-the-practice
embedded maintenance practices. Section 2 introduces the area of embedded software based on embedded systems, the implication of
embedded software and some of its characteristics. Section 3 describes the more general area of software maintenance, different process
models and characteristics. Section 4 analyzes embedded software maintenance and investigates how the characteristics of embedded
systems affect software maintenance and then describes the typical problems and issues in maintenance. This section also links typical
problems to the case studies that can be found in Appendix A. Section 5 discusses potential solutions. One solution, impact analysis,
addresses problems that are identified in many case studies; we discuss impact analysis in Section 6. References are listed in Section 7.
Appendix A contains details of the case studies. In Appendix B, we list some of the resources that are available for readers interested in
further studies of embedded software maintenance.

15. SUBJECT TERMS
Embedded software, software maintenance, software maintainability, software reliability

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

UL 68

19b. TELEPHONE NUMBER (include area
code)
315-334-4900

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

Table of Contents
1 INTRODUCTION ...4

1.1 LACK OF RESEARCH... 5
1.2 SOFTWARE MAINTENANCE VS. EMBEDDED SOFTWARE MAINTENANCE 5
1.3 ORGANIZATION OF THIS REPORT ... 6

2 EMBEDDED SOFTWARE..7

2.1 EMBEDDED SYSTEMS... 7
2.2 EMBEDDED SOFTWARE .. 9

3 SOFTWARE MAINTENANCE .. 10

3.1 CORRECTIVE SOFTWARE MAINTENANCE ... 10
3.2 ENHANCEMENTS AND EVOLUTION... 10
3.3 SOFTWARE MAINTENANCE PROCESS MODELS... 11
3.4 MAINTAINABILITY ... 13

4 EMBEDDED SOFTWARE MAINTENANCE .. 14

4.1 CHALLENGES IN EMBEDDED SOFTWARE MAINTENANCE 14
4.2 MAIN ISSUES FOUND IN CASE STUDIES.. 17

5 POTENTIAL SOLUTIONS .. 22

5.1 MAINTAINABILITY ... 22
5.2 RELIABILITY CENTERED MAINTENANCE.. 24
5.3 SOFTWARE CONFIGURATION MANAGEMENT (SCM) ... 25
5.4 TECHNICAL MANAGEMENT OF EXTERNAL TEAMS... 26
5.5 IMPACT ANALYSIS ... 26

6 IMPACT ANALYSIS .. 28

6.1 DIFFERENT FLAVORS OF IMPACT ANALYSIS .. 28
6.2 RIPPLE EFFECT ANALYSIS AND DEPENDENCY ANALYSIS 29
6.3 TRACEABILITY APPROACHES ... 30
6.4 A FRAMEWORK FOR IMPACT ANALYSIS... 30
6.5 A MODEL FOR IMPACT ANALYSIS.. 31
6.6 RIPPLE EFFECTS IN DOCUMENTS ... 33
6.7 SOFTWARE ARCHITECTURE ANALYSIS AND IMPACT ANALYSIS......................... 34
6.8 EXPERIMENTS ON IMPACT ANALYSIS... 34
6.9 SUMMARY.. 36

7 REFERENCES... 37

APPENDIX A. CASE STUDIES... 42

A.1. CONSUMER ELECTRONICS.. 42
A.2. MOBILE PHONES .. 44
A.3. FIELD DEVICES .. 45
A.4. DIGITAL SUBSCRIBER LINE (DSL) MODEMS ... 46
A.5. TELECOMMUNICATION SYSTEMS ... 47
A.6. TELEPHONE SWITCHES... 49

i

A.7. AUTOMOBILES ... 50
A.8. SPACE INSTRUMENTS ... 52
A.9. AIRPLANES .. 54
A.10. SATELLITES.. 55
A.11. SPACE SHUTTLES ... 56

APPENDIX B. RESOURCES... 59

B.1. MAGAZINES, JOURNALS, AND CONFERENCES.. 59
B.2. NOTIFICATION SERVICES AND TOOLS .. 60
B.3. TOOLS.. 60
B.4. CONSULTING AND TRAINING ... 60
B.5. THE EMBEDDED COMMUNITY.. 61
B.6. APPLIED RESEARCH: VTT ELECTRONICS .. 61
B.7. UNIVERSITY RESEARCH ... 62
B.8. RESEARCH PROJECTS: DARPA.. 64

ii

List of Figures

FIGURE 1: THE CONCEPTUAL STRUCTURE OF EMBEDDED SYSTEMS [25]........................... 8
FIGURE 2: DOMAIN FACTORS AFFECTING SOFTWARE MAINTENANCE 11
FIGURE 3: THE V-LIKE SOFTWARE MAINTENANCE PROCESS MODEL [15]........................ 12
FIGURE 4: THE AMES MAINTENANCE PROCESS MODEL [33].. 13
FIGURE 5: THE RELATIONSHIP BETWEEN DESIGN AND SOFTWARE MAINTENANCE [38] ... 13

List of Tables

TABLE 1: INCREASE IN THE AMOUNT OF CODE EMBEDDED IN MOBILE PHONES [18] 9
TABLE 2: TYPES OF CHANGES ... 12

2

Acknowledgement:

We would like to thank the following people for making this report possible:

• Frank Bomarius, IESE, for interviews with companies.
• Forrest Shull and Ioana Rus for ideas.
• Victor R. Basili for supporting this work.
• Rikin Thakker for helping with the research.
• Jen Dix for proof reading.

3

1 Introduction

Due to the dramatic evolution of computer technology, computer power per dollar
increases more than 1,000 times every ten years [Davis, 1993]. The result is faster, less
power-consuming, and smaller computers that are not only placed on everybody’s
desktop, but are also built into many apparati and machines [Davis, 1993]. These built-in
computers are referred to as Embedded Systems. These often small, built-in computers
rule the marketplace: approximately 80 million PCs are sold every year as compared to
circa 3 billion embedded CPUs [Koopman, 1999]. The embedded market is growing,
while the PC market is mostly saturated.

A wide range of embedded systems exists on the market. Many products that feature
embedded systems are small, relatively inexpensive and have a short lifetime of a few
years before the next-generation product replaces them. Examples are mobile phones and
other home electronics. In contrast, large, expensive and complex capital equipment,
such as telephone switches, automobiles, airplanes, and industrial machines, are often
safety-critical and in operation for several decades. All embedded systems, however,
form part of a larger product. The buyer is primarily interested in the benefits the product
brings and not in the embedded system. The fact that the product is based on computer
technology is, however, not a major selling point, or even obvious to the buyer
[Koopman-a, 1996], [Koopman-b, 1996].

The emergence of embedded systems in products of virtually all domains has resulted in
a dramatic increase in products incorporating Embedded Software. The most recent
generation of embedded systems relies heavily on embedded software. As a matter of
fact, many of their features, which used to be controlled by electronics or mechanical
components until a few years ago, are now software controlled. Current trends reveal
that functionality that traditionally was implemented in hardware is now implemented in
software. The Electronic Industries Association predicted, for example, a growth of
software costs of 680% as compared to a growth of hardware costs of 340% for U.S.
Department of Defense’s (DOD) embedded systems development between 1980 and
1990 [Davis, 1993].

The emergence of this wide spectrum of embedded systems, and the increasing use of
software for implementing the functionality, has led to increasing demands for more
sophisticated Embedded Software Maintenance.

Regular software maintenance is time-consuming, cost-intensive, and error-prone. The
costs for maintaining a system after it has been put into operation are usually much
higher than providing similar functionality when software is originally developed. As a
matter of fact, 40 to 75 percent of the total life-cycle costs of software are consumed in
the maintenance phase [Lientz and Swanson, 1980].

Maintenance of embedded software is much more expensive than maintenance of non-
embedded software. A study performed at the DOD found that maintenance of

4

embedded software costs approximately $110 per line of code, while the cost for non-
embedded software is $5.60 per line of code [Clark, et. al., 1999]. The growing use of
embedded software and the demand for ways to decrease the cost of embedded software
maintenance motivates further study.

1.1 Lack of Research

Despite its importance, a search of the literature on the topic of embedded software
maintenance uncovers a lack of systematic investigation, let alone results, in that field.
This impression is backed by [Sahin and Zadeli, 2001]. The difficulty of finding
literature on embedded software maintenance can be related to the fact that the term
embedded is rarely used.

“Personal computers are easy to describe. The English word ‘computer’ is enough to put
that very image in the mind of at least a billion people; a quarter as many own one.
Embedded systems are completely different. Few other than engineers have heard the
term; most don't even notice that their microwave or cell phone has a computer at its
heart. Even the designers of such systems can't always agree on what exactly the
category includes. The company Cisco doesn't think of itself as an ‘embedded system
design company’, even though many of the engineers who work there may consider that
they do just that” [Barr, 2002].

It is hard to draw a sharp line between embedded and non-embedded systems. Many of
the issues in regular software maintenance are likely to be similar to the ones experienced
in embedded software maintenance. Therefore, the basic techniques and solutions are
related. However, embedded software possesses characteristics that demand special
treatment.

1.2 Software Maintenance vs. Embedded Software Maintenance

Early work on software maintenance defined software maintenance narrowly as
correcting errors and broadly as expanding and extending software functionality (i.e., as
continued development) [Chapin, et. al., 2001]. This viewpoint is reflected in the four
dimensions of software maintenance [Lientz and Swanson, 1980]:

• Corrective: repair of discovered faults
• Adaptive: environmental adaptations (e.g., upgraded hardware, embedded COTS)
• Perfective: functional enhancements due to new and/or revised requirements
• Preventive: changes to increase maintainability of software

These dimensions give structure to the “reactive” part of maintenance activities,
exercised once a product is delivered, to maintain and to renovate as necessary. This
model primarily refers to the system owner or user point of view of maintenance [Chapin,
et. al., 2001]. The model was quite successful in the past, since typically few changes

5

occurred once software was deployed: In the past, electronic control units were replaced,
not “refurbished-in-place” with updated software. With reactive maintenance becoming
more and more complex and expensive, software developers are seeking more
“proactive” approaches to maintenance.

1.3 Organization of This Report

The goal of this report is to describe the state-of-the-art of embedded software
maintenance and provide a glimpse of state-of-the-practice embedded maintenance
practices. Section 2 introduces the area of embedded software based on embedded
systems, the implication of embedded software and some of its characteristics. Section 3
describes the more general area of software maintenance, different process models and
characteristics. Section 4 analyzes embedded software maintenance and investigates how
the characteristics of embedded systems affect software maintenance and then describes
the typical problems and issues in maintenance. This section also links typical problems
to the case studies that can be found in Appendix A. Section 5 discusses potential
solutions. One solution, impact analysis, addresses problems that are identified in many
case studies; we discuss impact analysis in Section 6. References are listed in Section 7.
Appendix A contains details of the case studies. In Appendix B, we list some of the
resources that are available for readers interested in further studies of embedded software
maintenance.

6

2 Embedded Software

We believe that in order to understand how to best manage embedded software
maintenance, one needs first to understand the characteristics of embedded software
maintenance. This means understanding what characterizes embedded systems and
embedded software, as well as the commonalities and differences between regular
software maintenance and maintenance of embedded software.

2.1 Embedded Systems

“An embedded system is a part of a product with which an end user does not directly
interact or control.”1

Other characteristics are:

• Embedded systems consist of computers affiliated with products for
implementing control, communication, usage and other intelligent functions

• Products with embedded systems include modems, disk drives, digital cellular
phones, radios, audio CD players, music synthesizers, videodisk players, sonar,
radar, confocal microscopes, Magnetic Resonance Imaging (MRI) medical
instruments and systems, video telephones, automobiles, industrial machines,
airplanes and missiles

• Embedded systems utilize mechanics, electronics, and hardware and software
technologies that are closely related to each other

• Embedded systems often have no real keyboard and a limited display
• Embedded systems often have real-time requirements, i.e., correctness is partially

a function of time
• Many embedded systems must be robust, i.e., their behavior must always be

controlled, even during system failure

The conceptual structure of Embedded Systems, using a telecom network and mobile
phones as an example, is illustrated in Figure 1 [Kuvaja, et. al., 1999]. Embedded
computer systems consist of software and hardware (electronics and mechanics).
Embedded products include embedded computer systems directly incorporated into
electromechanical devices, called the target environment. When the target environment
is distributed, it causes complicated control and communications problems. The use
environment of the embedded product includes end-users, operators and standards. End-
users of the embedded product range from non-technical to highly technical people who
use the embedded product for their own purposes. Operators are those who manage,
support and utilize the embedded product. One example of an operator is a telecom
operator who manages and controls a telecom network for mobile phones. Standards set

1 www.embedded.com

7

http://www.embedded.com/

a basis and regulate the use of the embedded product in its use environment. An example
is a mobile communication standard, such as GSM.

 Embedded
Systems (Domain)

Embedded Product Use Environment

Embedded
Computer
Systems

Target
Environment Standards End Users Operators

Software Electronics Mechanics

Figure 1: The Conceptual Structure of Embedded Systems [Kuvaja, et. al., 1999]

There are many different kinds of embedded systems. They can be divided into four
application types [Koopman, 1999]:

General Computing

• Applications similar to desktop computing, but in an embedded package
• Examples are video games, set-top boxes, wearable computers, and automated

tellers

Control Systems

• Closed-loop feedback control of real-time systems
• Examples are vehicle engines, chemical processes, nuclear power, and flight

control systems

Signal Processing

• Computations involving large data streams
• Examples are radar, sonar, and video compression

Communication & Networking

• Switching and information transmission
• Examples are telephone systems and the Internet

8

2.2 Embedded Software

Embedded system design focuses on the implementation of a set of functionalities
satisfying a number of constraints. The choice of implementation determines which
functionality will be implemented, either as a hardware component or as software
running on a programmable component [Sangiovanni-Vincentelli and Martin, 2001]. The
complexity, coupled with constantly evolving specifications, has forced designers to look
at implementations that are flexible and can be changed rapidly. Since hardware
manufacturing cycles do take time and are expensive, interest in software-based
implementation has risen considerably. Increased processor performance and decreased
size and cost have shifted functionality to software [Sangiovanni-Vincentelli and Martin,
2001].

Table 1 shows, as an example, the growth of embedded software in mobile telephones
during the past fifteen years [Karjalainen, et. al., 1996]. Consequently, considerable
product development efforts are expended on software. The flexible nature of software
has made it a core technology for implementing customer specific features. It is
estimated that by the year 2010 there will be over ten million professionals developing
embedded software [Seppänen, et. al., 1996].

Table 1: Increase in the Amount of Code Embedded in Mobile Phones
[Karjalainen, et. al., 1996]

Generation System
Type

Example System Software Size

1984: 1st Analogue Nordic mobile phone system (NMT) Some Kbytes
1988: 2nd Analogue NMT Tens of Kbytes
1992: 1st Digital Global system for mobile

telecommunications (GSM)
Hundreds of
Kbytes

1996: 2nd Digital GSM About One
Million Bytes

Most embedded software has a development environment that is different from the target
environment. The development environment enables development of embedded software
on a regular workstation. The development environment often has simulators and other
means for verifying that the software works as intended. When the software is
“finished,” it is uploaded to the target environment. Typically, the software cannot be
debugged or changed in the target environment. Necessary changes are completed in the
development environment, and a compiled version is again uploaded to the target
environment. The difference in target and development environment makes embedded
software maintenance much more complicated.

9

3 Software Maintenance

All software maintenance, whether it is embedded or not, deals with error correction or
enhancements. The area most dealt with in the literature, is corrective maintenance.
Maintenance related to further development of the system, which we call enhancements
or evolution, is not as well covered in literature. These two types of maintenance will be
described first, and then more extensive models will be discussed.

3.1 Corrective Software Maintenance

When a system does not conform to specifications, a trouble report is issued. The
maintenance programmer must investigate the trouble report, map the erroneous behavior
to the internals of the system, localize the primary and secondary changes to be made to
fix the problem, accomplish the changes and test the system to ensure that (a) the
problem is removed, (b) no new problems are introduced, and (c) the system is still
functioning according to the intentions of the system.

Corrective software maintenance can be characterized as follows [Weiderman, et. al.,
2002]:

• It is a fine-grained, short-term activity focused on (possibly a large number of)
localized changes. Good examples include the Y2K problem and the Euro
conversion

• The structure of the system remains relatively constant, and the changes produce
few economic and strategic benefits

• There is a tendency to respond to one software requirement at a time. There are
few economies of scale that accrue from software maintenance

3.2 Enhancements and Evolution

When specifications are changed, i.e., a new requirement is added or an existing
requirement is changed, the programmer has to understand the new requirement and how
it relates to the set of existing requirements, how the existing requirements relate to
existing user functionality, and where to insert the new user functionality into the existing
user functionality. The primary place for the change is determined by mapping the user
functionality to the system and finding the place to insert the new code. Secondary
changes, changes in the surroundings of the system, must then be determined. When the
changes are implemented, the system is tested to ensure that (a) the new requirement is
implemented, (b) no new problems are introduced, and (c) the system is still functioning
according to the system intentions.

10

System evolution can be characterized as follows [Weiderman, et. al., 2002]:

• It is a coarser grained, higher level, structural form of change that can make the
software system potentially easier to maintain

• It allows the system to comply with broad new requirements and gain whole new
capabilities

• Instead of changing software only at the level of instructions in a higher level
programming language, changes are made at the architectural level

• System evolution increases the strategic and economic value of the software by
making it easier to integrate with other software and making it more of an asset
than a liability

The purpose of the maintenance process as defined by ISO/IEC 15288 is to sustain the
capability of the system to provide a service. It monitors system performance, records
problems for analysis, makes corrective and preventive actions and confirms restored
system capability. IEEE Std. 1219-1998 defines software maintenance as a post-delivery
activity as follows:

“Modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a modified
environment.”

3.3 Software Maintenance Process Models

Maintenance can be approached from many directions. To ease the discussion of
maintenance and related maintenance processes, a domain factor model of software
maintenance was proposed [Kitchenham, et. al., 1999] (see Figure 2).

MAINTENANCE
PROCESS

Product
• Size
• Age
• Type
• Composition

Process Organisation
• Engineering Management
• Group Organisation
• Methods
• Resources
• Technology

Peopleware
• Skills
• Attitudes
• Customer and User

Maintenance Activity
Types
• Correction
• New requirements
• Requirements Change
• Implementation Changes

Figure 2: Domain Factors Affecting Software Maintenance

11

3.3.1 V-model Type Maintenance Processes

A more detailed analysis of maintenance activities results in six types that affect the
maintenance process [Harjani and Queille, 1992] (see Table 2). The V-model type
maintenance process model [Harjani and Queille, 1992], which is primarily applicable to
corrective changes, is illustrated in Figure 3. The model presents the basic maintenance
activities and their sequential order.

Table 2: Types of Changes

Type Description
User Support Activities for providing answers to users’ information requests and

correcting misunderstandings
Corrective
Maintenance

Activities for error correction in software without making any
changes to the requirements

Evolutive
Maintenance

Activities for adding new functionalities in response to new or
changed functional requirements

Adaptive
Maintenance

Activities to adapt software to changes in the operational
environment

Perfective
Maintenance

Activities for improving non-functional requirements such as
execution time

Anticipative
Maintenance

Activities to anticipate future problems and increase software’s
robustness or render it easy to modify if the changes are realized in
the future.

Figure 3: The V-like Software Maintenance Process Model [Harjani and Queille,

1992]

12

3.3.2 The AMES Maintenance Process Model

The AMES model suggests a higher-level view of maintenance processes. It identifies
three layers: strategic, management and technology [Mäkäräinen, 2000]. The strategic
layer makes decisions regarding the future of the product and determines customer or
user relationships. The activities include marketing, budget allocation, training and
process improvement. The management layer plans activities and tracks progress, makes
implementation decisions, manages problems, and initiates and closes changes. The
technical layer implements the changes. The three-layer maintenance process model is
presented in Figure 4.

Figure 4: The AMES maintenance process model [Mäkäräinen, 2000]

Strategy
Definition

Strategic
Planning

Problem
Management

Preparation of
Intervention

Closure of
Intervention

Help Desk Problem
Qualification

Maintenance
Intervention

Configuration
Management

Layer 1:
Strategic

Layer 2:
Maintenance
Management

Layer 3:
Technical

3.4 Maintainability

It is too late to worry about maintainability when software is released. This is especially
true for embedded software, which is often hard to change once it is delivered.
Maintainability must instead be built into the system from the very beginning, during
planning and design phases. Design decisions in early phases have been found to have a
larger impact on maintainability than implementation algorithms [Rombach, 1987]. The
lack of design is illustrated in Figure 5 [Pressman, 1992]. If the design phase of software
development is ignored (or of poor quality), it has an enormous negative effect on all
following activities, including maintenance.

Design

Implementation

Test

Maintenance

Implementation

Test

Maintenance

Figure 5: The Relationship Between Design and Software Maintenance [Pressman,
1992]

13

4 Embedded Software Maintenance

There are a number of reasons for the high costs and low productivity of implementing
changes in any type of software:

• Maintenance personnel often maintain systems they did not develop. In
addition, staff members are often relatively inexperienced and unfamiliar with
the application domain. Maintenance has a poor image among software
engineers. It is seen as a less advanced process than system development and is
often allocated to the most junior staff.

• The software systems being maintained may have been developed many years
ago without modern software engineering techniques. They may be
unstructured and optimized for efficiency rather than understandability. The
software system being maintained is often poorly documented or the provided
documentation is inconsistent with the developed code. The documentation
may, therefore, be an unreliable aid for understanding and changing the system.
The code was often written before the documentation. Frequently, a separate
group, one that does not include any of the designers, writes documentation.
Usually, programmers consider the pre-implementation documentation so vague
that it is nearly useless.

• The structure of the changed software system tends to degrade. This makes the
system harder to understand and makes further changes difficult because the
system becomes less cohesive.

• Changes made to a software system in the past may introduce new faults that
trigger further change requests. New faults may be introduced because the
complexity of the system may make it difficult to assess the effects of a change.
Relationships between software entities are not documented explicitly. Ripple
effects of changes cannot be controlled.

• Change processes are often not guided. Process descriptions for activities, like
change, version, or release management, do not exist.

4.1 Challenges in Embedded Software Maintenance

In principle, the embedded software maintenance process does not differ from the non-
embedded software maintenance process. It has the same main phases, but, due to its
special nature, additional factors must be taken into consideration.

Maintenance needs differ depending on the type of software. Different embedded
software may further produce application-independent software maintenance needs. It is
possible to distinguish between three classes of embedded software [Taramaa, et. al.,
1996]:

1. Product software not unique to the application (to be used in several kinds of
products)

14

2. Special system software for the operating system, communication and device
control

3. Application software (specific to the application)

Using this embedded software taxonomy, the following concerns related specifically to
embedded software maintenance are identified [Taramaa, et. al., 1996]:

1. A new version of non-unique product software may be incompatible with the rest
of the software

2. System software may be so specific that a change of operating system or
hardware might require extensive modifications or a total rewrite of other code

3. Product software often operates only on a specific hardware platform, so that
hardware changes make the original software incompatible

4. Application software may become incompatible with the special system software
and hardware when switching to new computing platforms

Specific characteristics of embedded systems that characterize and set limits for software
maintenance are [Kuvaja, et. al., 1999]:

1. Software is closely connected to hardware
2. Product design is constrained by the implementation technology
3. Different technologies used in the same embedded system are developed in

parallel
4. Different low-level and high-level software implementation technologies are used
5. Real-time processing and data management are used, often based on a distributed

system architecture
6. Reliability requirements are crucial
7. Device autonomy is used
8. Maintainability and extendibility through new functions, technologies and

interfaces often required
9. Cost of the product is important in mass-markets
10. Short development lead-time (time-to-market) is required

In addition to the embedded software-specific characteristics set by the hardware
connection, all the issues that make maintenance difficult in general are, unfortunately,
valid also for embedded software maintenance.

Reasons that complicate embedded software maintenance are [Mäkäräinen, 2000]:

• Age of software
• Loss of design knowledge
• Loss of original requirements
• Accumulation of problems and change needs
• Lack of design for change
• Time pressure
• Diversity of tools and information

15

• Poor image of change function
• Poor maintainability of just-released software
• Code decay
• Few tools and methods
• Verification across several product versions
• Research focus on developing new software, not managing existing systems

Four embedded software characteristics that impose particular difficulties in performing
changes in this type of system are [Mäkäräinen, 2000]:

• Concurrent systems engineering. Hardware and software components are
developed concurrently. The requirements for both the hardware and software
components change while they are being developed, creating more difficulties in
the process of managing the changes. Also, problems in testing and the location
of errors are very likely since the hardware environment where the software will
run will be available late in the development process.

• Sharing of software parts in several products or product families. Since
customizing products with software is more cost effective than with hardware, it
is typical to have a common hardware with different versions of software to
customize the products. Since new products are often based on previous versions
of the system, a lot of problems in change management exist.

• Primitive software engineering environments. Embedded systems often have
time, memory or power-consumption constraints. The compilers for high-level
languages do not optimize the code enough to meet those constraints.
Consequently, software is always developed in assembly language and in very
primitive software engineering environments, with almost no support for testing,
code measurement, etc. As a result, the code is very hard to understand. Also,
the tight relationship between hardware and software make it harder to locate the
problems.

• High reliability demands. For some embedded systems, it is impossible to make
any changes to the system after delivery. Some systems might be in an
inaccessible environment, while other systems are released in a huge volume,
making changes after delivery very difficult and costly.

We also recognize these other characteristics of embedded software systems that have an
impact on the process of maintenance:

• Hardware constraints. Embedded products often have hardware constraints of
weight, size, cost, power-consumption, memory, etc. As a result, code is written
with optimization in mind rather than understanding, making it harder to manage
changes.

• Development environment is different than target environment. Frequently,
developers do not have access to the target system for various reasons.
Development is therefore done in a development/simulation environment that has
a different behavior than the target environment, since some aspects of the target

16

environment are hard to simulate. Also, the target environment is often a
specialized environment that requires well-trained developers.

4.2 Main Issues Found in Case Studies

In order to better characterize embedded software maintenance, we analyzed case studies
that cover the following product areas: Consumer electronics, DSL-Modems, Mobile
phones, Airplanes, Satellites, Field appliances, Automobiles, and Industrial machines.
The case studies gave us insight into common problems, ideas and solutions in embedded
software systems. Some case studies were found in the literature and we conducted
others. The case studies report how maintenance is performed in practice, identify
typical problems practitioners have, and, in some cases, describe how they solved those
problems. The case studies can be found in Appendix A.

This section presents the main issues identified in the case studies. It is important to
notice that while the problems were mentioned or reported by specific organizations, we
believe that almost all these problems are common in all embedded systems
development. Some of the problems are related only to embedded systems, while others
are also observed in the maintenance of non-embedded software systems. However,
common problems in other types of systems are accelerated in the embedded systems
environment. Another important note is that these problems are observed at this date,
some will be eased with future technological advances, while others will always exist.

4.2.1 Unstable requirements

Some of the organizations (telecommunications systems and space instruments) mention
unstable requirements as a primary problem. Requirements are added and changed
frequently; this causes problems in the projects. In an environment where the change of
requirements is the rule, it is common that the changes are not effectively communicated
to all partners, causing problems in the integration phase and making software
maintenance more complex.

4.2.2 Technology changes

One common problem for some organizations (consumer electronics, automobiles,
airplanes and space instruments) is related to changes in technology.

In the consumer electronics and automobile organizations, technology changes are related
to changes in the development tools. In the consumer electronics case, new versions of
the development tools are delivered several times during the maintenance phase of the
software. Problems occur if the software has not been changed in any way for a long
time and there have been several new compiler releases during that time. It is difficult to
use a new version of a tool when the maintenance activity needs to be performed quickly.
In the case of the automobile company, it is not enough to put software under

17

configuration management. Tools, compilers, and documentation need to be under
configuration control. This can be especially complicated if a contractor did part of the
work.

In the organization that develops airplanes, technology changes are related to changes in
the technical configuration, causing changes in the software. To avoid this situation,
development teams try to stick to a given technology as long as possible. In addition, the
selected technology has to be available for a long time.

The organization that develops space instruments reports problems with version control
of code. No automated configuration management tools have been used during the
prototyping phase. Frequently, one person conducted the programming of a module and
when someone else made changes in the code, version control of the code became very
difficult.

4.2.3 Location of errors

Many organizations (consumer electronics, telecommunications systems and
automobiles) mention that error location is very time-consuming. In the consumer
electronics organization, the reason is that the person who has to find the error is not the
one who reported it. In environments where location is very time consuming, it makes
the whole maintenance phase become longer and more complex. The “organization
developing automobiles” case study demonstrates that their chief problem lies in
determining whether the hardware or software caused a failure, because (a) failure reports
of the software do not contain sufficient information to allow the cause of a failure to be
identified clearly; (b) system failures may be difficult to reproduce; and (c) it cannot be
objectively judged whether the hardware caused the failure or whether the software was
not “intelligent” enough to compensate for existing hardware limitations.

4.2.4 Impact of change

Identifying the impact of changes poses another common problem. Once the problem is
localized or a new change is requested, it is necessary to decide which parts of the
software will be modified to fix the problem or implement that change. Changes cause
ripple effects that need to be determined to avoid introducing new problems. Some of the
organizations (consumer electronics, telecommunications systems, telephone switches
and automobiles) report that locating changes and identifying ripple effects are very time
consuming tasks.

In the consumer electronics industry, modifications of the core part of the software will
also affect other products using the same core, making it even harder to identify the
impact of the change. In the “telephone switches” systems, the problem lies in the fact
that it is very hard to understand how the switches work. Very few people understand the
whole system, and it is very hard to determine the impact of a suggested change. In the
“automobiles” industry, the problem is related to the fact that hardware and software

18

interact so closely that it becomes difficult to determine the ripple effects in such an
environment.

4.2.5 Need for trained and specialized people

In some industries, the maintenance process is complicated by the difficulty in
understanding the software programs. In the case of space instruments, the hardware-
oriented code is hard to understand, requiring additional time for familiarization.

In the case of airplanes, the complexity lies in the fact that many different computer
systems are involved. The computer systems communicate with each other and run at
different processor speeds. Data is moved back and forth between these systems and it
can easily seem as though the data was transferred correctly when actually, in real time,
not enough time was devoted for the memory cells to stabilize. This makes it very easy
for mistakes to occur. In addition, most of the systems, including hardware, are
developed for a specific purpose, which creates problems with staffing. A long training
process is, for example, necessary for new people not used to the environment.

In the “telephone switches” case, a majority of the development environment (hardware
and software) is non-standard. As a result, little knowledge and experience sharing can
occur between the company and the outside world. Likewise, it takes a long time to
familiarize new people due to the fact that they often have little or no experience in
similar environments.

4.2.6 Lack of documentation

The lack of documentation causes further problems. In the case of consumer electronics,
the development phase does not produce much documentation. The maintainer is
responsible for updating the documentation manually if needed. Thus, documentation is
often not up-to-date. The “automobiles” industry also reports that, technically,
maintenance requires that documentation is being used and updated, but the
documentation is never good enough and it shows the obvious, not the relevant. The
organization also reports a lack of documentation (or knowledge sharing) that would
enable the organization to remember how to use the languages and tools that form part of
older products. In addition, when systems are built on several modeling styles,
knowledge gets lost when old styles are forgotten.

In the Space Instruments case, the specifications and requirements for the software have
changed frequently. Most changes have been made directly to the source code.
Sometimes, document updates have been omitted because of frequent changes that
resulted in inconsistent documentation.

The telecommunications systems organization reports a problem related to the lack of
traceability and design rationale. Traceability information between a change request
document and the modified document is often missing. The original motive and effort

19

spent for each modification is not recorded. The modification is usually recorded, but the
reason why it was undertaken is not. Project plans are changed according to new
requirements, but no statement is included that explains why the change to the plan was
implemented.

4.2.7 Simulation environment versus target environment

Some industries face challenges related to the fact that development occurs in a
simulation environment, and then the software is uploaded to the target environment.
Often, it is not possible for every developer to have access to a prototype of the target
environment, and development has to rely on simulation environments that behave
differently than the target environment.

In the “mobile phone systems” organization, the problem is that the behavior in the
simulation environment differs from the target environment. Limitations are typically
related to real-time aspects that are hard to simulate. One such aspect is that the network
requires that a call be answered within a certain time. Another problem is that memory
allocations are done in a different way in the simulated environment compared to the
target environment. This makes it hard to detect memory problems early. It is difficult to
debug the software once it is downloaded to the cell phone because any changes to the
software cause the system to behave differently.

In the “airplanes” systems, the largest problem reported notes that real-time aspects do
not show in the simulation environment. Some of these aspects can be spotted in more
advanced flight simulators, but the most intricate ones do not manifest until operation on
the airplane.

In the case of the telephone switches organization, equipment is very expensive and the
developer does not have access to the switch, i.e., the target environment.

4.2.8 Hardware constraints

Other challenges faced in the development and maintenance of embedded software
systems are due to hardware constraints. In the “mobile phone systems” for instance, the
lack of memory is a problem because mobile phones have to be small and are sensitive to
any increase in cost, weight, and size. This results in code optimized for fitting into a
small memory instead of for readability.

In Digital Subscriber Line (DSL) modems, cost, size and weight sensitivity put severe
constraints on feasible solutions. Adding more memory (for example, redundant memory
to make sure upgrades do not go wrong) adds to the cost of the product. Adding
hardware also adds to the size and weight of the product, which also can be a problem
due to such limitations.

20

4.2.9 The testing process

Another problem reported by some of the organizations has to do with the difficulty or
deficiency of testing and review processes. In the consumer electronics industry, testing
is done manually without any support. Testing takes too much time, and the coverage of
the testing procedures is not known. Subsequently, the most serious errors are often
found when the product is already in the field. In telecommunication systems, regression
testing is difficult because of the complexity of the system.

In space instruments, a lot of time is spent in testing because of the requirement for high
reliability of the software. No systematic method to ensure that the coverage of the case
software test is complete and sufficient has been used.

4.2.10 Other systems specific problems

Some organizations reported other types of problems that are specific to their
organization and applications.

The telecommunication systems organization reported a code decay problem. The
software is reused repetitively in many subsequent projects, causing the software to
decay. It is, however, hard to detect such decay.

The “Digital Subscriber Line (DSL) modems” organization reported a problem related to
the complexity of the upgrading procedure. If the upgrading procedure is incorrect, it
threatens the overall functionality of the modem. The most important problem is to
protect sensitive memory from being overwritten during upgrading of software. A
strategy for reducing the risk of overwriting memory is to have a double, redundant
memory. The new software is then uploaded to one of the memory units while the other
one serves as backup. If anything goes wrong, the system falls back to the backup.

The “satellites” organization mentioned a problem related to its remote, disconnected
system. It is not easy to reboot remote space systems, and software failure is more likely
to cause loss of the system or the mission.

The space instruments organization faces a problem related to concurrent development.
Since product parts are designed and built simultaneously by separate subcontractors, the
integration of the devices cannot be accomplished until each partner has achieved a stable
version of their parts.

The telecommunications organization mentioned a problem related to the lack of learning
based on defect data. No systematic practices for analyzing the change data for learning
or improvement purposes exist.

21

5 Potential Solutions

After reviewing the case studies, we identified the main issues faced by organizations
when dealing with embedded software maintenance, which were presented earlier. This
section indicates possible solutions to resolve some of these issues. There is no silver
bullet, but ideas from this section can be used to make maintaining embedded systems
easier and more efficient.

Companies can influence most of the issues listed in Section 4. Most actually result from
poor software quality and management of the software engineering process itself. Some
of the potential solutions described here are even based on some of the case studies
themselves. Knowledge Management is, for example, a new area that could provide a
general solution to the problem of losing knowledge in software organizations [Rus and
Lindvall, 2002]. Another potential solution is to verify that maintenance and testing
processes are in place and conducted in an efficient way. Other, more specific solutions
observed in the case studies include, for example, duplication of resources, a course of
action that is already used in many systems (see Appendix A, Sections A.4 and A.6 for
more information).

The following sub-sections present possible solutions for improving the process of
maintaining embedded software systems. We will discuss a new approach to
maintenance planning, Reliability Centered Maintenance, that has been applied in
numerous domains to the maintenance of heterogeneous systems, and we will also
investigate technical management of external teams as ways to improve the process. We
will also comment on software configuration management and impact analysis as specific
activities that can help organizations improve. As impact analysis was mentioned in
many case studies, we will devote a special section to it. But before we go into the
solutions, let us first revisit the area of maintainability in order to lay the groundwork for
possible solutions.

5.1 Maintainability

Even though the IEEE Standard on Software Maintenance 1219-1998 defines
maintenance as a post-delivery activity, it acknowledges the need for overlap by stating
“Ideally, maintenance planning should begin during the stage of planning for software
development.” [Life Cycle Working Group, 1998]

By looking at the maintenance process, one understands better what properties make a
system easier to maintain. The process of maintenance can be broken down into the
following sub-processes:

1. Understanding the change request
2. Understanding the system and its structure

22

3. Locating where to change the system in order to implement the change request
(primary changes [Lindvall, 1997])

4. Implementing the primary changes
5. Determining the ripple effects (secondary changes resulting from primary changes

[Lindvall, 1997])
6. Implementing secondary changes
7. Testing that the system fulfills all previous, as well as new, requirements

Due to the fact that the maintenance process is iterative, the stated order above indicates
steps to be taken, rather than the order in which they always occur.

Many studies indicate that there is only a vague connection between the requirements of a
system and its structure [Soloway, 1987]. This vague connection makes it hard to
conduct steps 1 to 3 above because they are dependent on each other. It is impossible to
fully understand a change request without comprehending the system, its structure, and
where in the system the change can be made. In the same way, it is hard to determine
ripple effects without implementing the primary changes, and the implementation of the
secondary changes might cause new ripple effects, necessitating another set of secondary
changes, and so on.

Ripple effects cause problems related to coupling between the pieces that make up the
software system, e.g., modules or components [Haney, 1972], [Yau and Collofello,
1980]. Both Collofello and Haney show that tighter coupling increases the risk of ripple
effects. Thus, reduced coupling between components reduces the risk of ripple effects,
change propagation and the generation of secondary changes as a consequence of primary
changes. Consequently, reduced coupling results in systems that are easier to maintain.
Guidelines like this can be used when designing and planning architecture to render the
system more maintainable.

As described earlier, maintainability can be viewed in many ways and depends on many
different factors. Code that is written according to a set of well-defined design rules and
guidelines is easier to understand, and therefore easier to maintain. Low complexity, low
coupling and high cohesion, in theory, indicate a higher level of maintainability. A
system that is easier to understand, change, and test is easier to maintain. A system with
well-structured, clearly-defined subsystems that is well documented and uses clear and
logical names is easier to maintain. A smaller system with equivalent functionality is
generally easier to maintain than a bigger system. A system that offers fewer features is
also easier to maintain.

While all of these characteristics indicate maintainability, some cannot be assessed until
the system has been operational and undergone changes. There are techniques and
methods that help the assessment of architecture properties that could be used to evaluate
the maintainability of an architecture before the system is implemented. One example of
such a method is the Architecture Trade-Off Analysis Method (ATAM) [Clements, et. al.,
2001]. The ATAM method uses brainstorming sessions to perform a trade-off analysis of
architectural decisions based on their impact on different quality attributes that are

23

important for different classes of stakeholders. Maintainability could be one of the
quality attributes. The method is valuable in an earlier phase of the development at the
time when the design is being created. Once the architecture is evaluated, the design
decisions are made and should be implemented.

Once the system is implemented, it is always a good idea to ensure that it matches the
design, especially if some effort was put into making decisions in the architecture to
ensure certain properties are achieved. Lindvall [Lindvall-a, et. al., 2002] [Lindvall-b, et.
al., 2002] and Tesoriero [Tesoriero, et. al., 2002] present a method that could be used to
(a) make sure the architecture maintains the properties desired to reach a certain quality
attribute and (2) make sure the implementation conforms to the design. These
assessments can be made for every version of the system when the method can be
applied.

Observing the case studies, we can identify situations where the organizations made
design decisions to make the system more maintainable despite the complexities and
particularities of the hardware. The “mobile phones” and “DSL modems” organizations
use layered architectures. The goal is to encapsulate the hardware by software so that
less hardware-oriented software can be developed. This renders it easier to maintain the
software as well as reuse it for similar products.

5.2 Reliability Centered Maintenance

Reliability Centered Maintenance, or RCM, is a new approach to maintenance planning
that has been applied in numerous domains to the maintenance of heterogeneous systems.
It is not a software maintenance approach, per se, but applies to entire systems of
hardware and embedded software. RCM is defined as “a process used to determine what
must be done to ensure that any physical asset continues to do what its users want it to do
in its present operating context” [Moubray, 2001].

The roots of RCM appeared in the early 1960s. The North American civil aviation
industry, in response to increasingly expensive and risky maintenance practices, put
together a series of “Maintenance Steering Groups” to re-examine these practices.

The RCM process begins by defining users’ expectations in terms of primary
performance parameters such as speed, range, risk, quality, economy, etc. The next step
is to identify ways in which the system can fail to live up to these expectations (failed
states), followed by a failure modes and effects analysis (FMEA) to identify all the events
that are reasonably likely to cause each failed state. Finally, the RCM process defines
actions to manage each type of identified failure, e.g., predictive or preventive
maintenance, design changes, or changes to operational procedures.

The seven basic questions that drive the RCM process are as follows [Moubray, 2001]:

• What are the functions and associated performance standards of the asset in its
present operating context?

24

• In what ways does it fail to fulfill its functions?
• What causes each functional failure?
• What happens when each failure occurs?
• In what way does each failure matter?
• What can be done to predict or prevent each failure?
• What if a suitable proactive task cannot be found?

One of the distinguishing characteristics of RCM is the centrality of the user and the
user’s expectations. Not only is it users’ expectations that initiate and drive the process,
but also users (i.e., people who live with the system under maintenance day in and day
out) make up an important part of the RCM Review Team. The idea is that such people
are an invaluable source of information.

The RCM Review Team [Moubray, 2001] is a small team that includes at least one
person from maintenance and one from operations. All team members should have a
thorough knowledge of the asset under review and should also have been trained in
RCM. This team structure allows management access to a wide range of knowledge and
expertise, while the members themselves learn a great deal about how the system works.
The members of a typical RCM review team include a facilitator, an engineering
supervisor, an operations supervisor, a technical expert, an operator, and an external
specialist (if needed).

The major outcomes of the RCM approach are [Moubray, 2001]:

• Greater safety and environmental integrity
• Improved operating performance (output, product quality and customer service)
• Greater maintenance cost-effectiveness
• Longer useful life of systems
• A comprehensive database of maintenance planning and activity
• Greater motivation of individuals
• Better teamwork

In practice, RCM (even streamlined versions of it) has often been found to be highly
labor-intensive. Another problem is that the specialized team that carries out the RCM
process does not always couch its recommendations to the maintenance organization in a
way that is easily translatable and does not promote ownership on the part of maintainers.
The cost of RCM can run as high as $40,000 a system and take as long as two years to
complete, even when the process is streamlined.2

5.3 Software Configuration Management (SCM)

SCM supports maintenance activities by providing the means to identify the
configuration of the software by systematically controlling changes of the configuration,

2 http://www.fractalsoln.com/reliability.html#improvement.

25

http://www.fractalsoln.com/reliability.html

and by maintaining traceability of the configuration throughout its life cycle [Dart, 1991],
[Tichy, 1988]. It is the hardware of embedded computer systems that changes the role of
SCM compared with its role in the context of a pure software system. Because embedded
software is part of a physical product, SCM must be seen in a more comprehensive
framework that includes interfaces with hardware and other technologies [Taramaa,
1998].

5.4 Technical Management of External Teams

Technical Management of External Teams is becoming increasingly important in the
maturing software domain where, as in other domains, more and more components are
purchased rather than built in-house. The decision to use external suppliers, be it COTS
suppliers or subcontracted developers, is always tied to the question of whether the
component to be purchased is considered to be part of the core competence of the
company.

In the embedded domain, system components are either outsourced entirely, which can
mean that a company loses or fails to build up a potentially vital competence, or are built
in-house with contractors that work on-site. In the latter case, additional requirements for
management are the selection of additional staff (e.g., free-lancers) and appropriate
contracting policies that leave the intellectual property rights with the company. For
subcontracting, the following issues must be addressed:

• Identification of components that are candidates for outsourcing
• Formulation of requirements that allow for tendering, bid-assessment, and

controlling the subcontract during execution
• Systematic assessment and selection of components (COTS)
• Systematic assessment and selection of subcontractors
• Contracting and controlling subcontractors
• Integration of the purchased componentMetrics/measures for managing

acquisition of COTS

5.5 Impact Analysis

The implementation of changes has to be planned. Planning requires an accurate estimate
of the cost caused by the implementation of the changes. The cost estimate has to be
precise because it is used as a basis for deciding whether the changes are to be
implemented or not. An accurate estimate of the costs can be supported by a precise
estimate of the impacts of changes. The process of identifying the entities that are
affected in the software by a software change is called impact analysis. Impact analysis
provides, for example, visibility into the effects of changes before the changes are
implemented. Traditionally, determining the effects of software change has been
something that software professionals do intuitively, after some cursory examination of
the code and documentation. This may be sufficient for small software systems, but not

26

for large ones. In addition, in a case study, Lindvall and Sandahl [Lindvall and Sandahl,
1998], showed that even software professionals predicted incomplete sets of change
impacts which indicates that impact analysis is difficult. Impact analysis for embedded
systems resembles impact analysis for non-embedded systems, but is expected to be even
more difficult. Change is typically propagated via dependencies between software
entities. Embedded systems are more complex than non-embedded systems because they
have additional dependencies. Examples are semantic and time-sensitive dependencies
that are not typically recorded and that result in hidden side effects. These side effects
are not very well understood. As a matter of fact, the paper by Li and Feiler [Li and
Feiler, 1999] was the only paper that we found that addresses this issue. Nevertheless,
embedded software can apply many of the general concepts and techniques for impact
analysis and, as impact analysis was identified as a critical area in many of the case
studies, we expand on the topic in the next section.

27

6 Impact Analysis

The goal of this section is to provide more detail on impact analysis. It starts with the
problem of ripple effects, which was discovered relatively early and resulted in a set of
techniques based on dependency analysis as the mechanism for propagation of change.
Dependency analysis research lays the foundation for impact analysis and the
understanding of the problem of detecting change. Little is said, however, in that kind of
literature about how to identify the initial set of changes. These primary changes are the
changes that stem from new requirements and cause the ripple effects (or secondary
changes).

As the size and complexity of software grew and many organizations defined and
documented requirements prior to implementation, interest also grew in relating
requirements to the software artifacts, which is also known as traceability. This
relationship can be used for identifying primary changes. Traceability techniques and
dependency analysis techniques can be combined to account for initial changes (primary
changes), as well as ripple effects (secondary changes).

In this section, we also describe a framework for impact analysis, a model for impact
analysis, as well as experiments with different impact analysis approaches and
techniques.

6.1 Different Flavors of Impact Analysis

Impact analysis can be performed during several phases in the software life cycle,
however with different objectives.

Requirements-driven impact analysis is motivated by the need to determine the cost of
proposed changes before they are implemented. Requirements-driven impact analysis is,
therefore, carried out very early, namely during the planning phase [Lindvall, 1997]. The
objective is to predict, for each new requirement, where and how much change is needed
in order to fulfill the new requirement, which can be used to calculate cost.
Requirements-driven impact analysis is based on the identification of primary changes, as
well as secondary changes with the constraint of not altering any source code.

Change-related impact analysis is motivated by the need to identify what additional
changes are needed. It is mainly focused on determining how a change of one entity of
the system affects other system entities (e.g., [Bohner and Arnold, 1996]). This is a
crucial activity during the implementation of the change. The objective is to identify all
entities (change candidates) that might possibly be affected by the change and inspect
each of them in order to decide whether it really has to change or not. It should be noted
that the primary changes are already identified at this point in time and the objective is to
account for all ripple effects (secondary changes).

28

Test-Related Impact Analysis is motivated by the need to limit regression testing - if it
is known exactly which entities are affected by a change, the unaffected entities need no
regression testing [Kung, et. al., 1994]. At this point in time all changes are known and
implemented. Unit testing has been carried out and it is now time to test whether the
system works as a whole, that the set of new requirements is correctly implemented and
that the system is still fulfilling the “old” requirements (regression testing).

For all of these different perspectives, ripple effect analysis, dependency analysis, and
traceability approaches can be used.

6.2 Ripple Effect Analysis and Dependency Analysis

Impact analysis can be characterized as detecting consequences of change using some
kind of dependency analysis. The model for module connection analysis [Haney, 1972]
is an early and typical example of dependency analysis. It uses a probability connection
matrix that subjectively models the dependencies between modules in order to determine
how change in one module necessitates change in other modules. This model is
probabilistic, meaning that it is probable, but not necessarily true, that change will
propagate as the model forecasts.

Mechanical approaches, as described by [Queille, et. al., 1994] are, instead, based on a
model of the system in terms of the static dependencies between entities, together with
change propagation rules. Using a change propagation mechanism it is possible to
identify changes that must be made. These techniques analyze how change propagates in
order to identify secondary change as a consequence of planned or conducted primary
change. Change candidates are entities in the source code that are likely to change and
each candidate must be analyzed in order to determine whether it must be changed or not.

It is also desirable to identify entities that are affected by change and might behave
differently as a result. Such entities might be affected by the change, but it might still not
be necessary to change them. It is, however, necessary to retest the affected entity as it
might behave differently, though still producing a correct result. This is exemplified in
[Arango, et. al., 1996], together with a technique for explaining how changes in data
representation translate into performance changes.

A different approach aiming at the same problem is slicing [Gallagher and Lyle, 1991].
The program is sliced into a decomposition slice, which contains the changed code, and a
complement slice, which is the rest of the program. Slicing is based on data and control
dependencies in the program. Changes made to the decomposition slice are guaranteed
not to affect the complement if a certain set of rules is obeyed. Slicing limits the scope
for propagation of change and makes that scope explicit. Turver and Monroe [Turver and
Monroe, 1994] use the technique for slicing of documents in order to account for ripple
effects as a part of impact analysis. Shahmehri, et. al., [Shahmehri, et. al., 1990] apply
the technique to debugging and testing. Complex languages are hard to slice and have
not been supported before, but techniques for C++ [Tip, et. al., 1996] and Java [Chen and
Xu, 2001] are now being developed.

29

6.3 Traceability Approaches

Traceability is germane to life-cycle meta-models such as the iterative reuse model
[Basili, 1990]. In this model, software includes not only the resulting source code, but
also up-front documents such as requirements and design specifications, which are
regarded as models at various abstraction levels of the software in service [Jacobson, et.
al., 1992].

Maintenance from Basili’s perspective, initially performs and documents changes of
requirements, which are subsequently propagated through the analysis and design models
to the source code. Proponents of this approach, such as [Pfleeger and Bohner, 1990],
assume a high level of traceability, which, in practice, implies that:

• All models of the software are consistently updated
• It is possible to trace dependent items within a model (vertical traceability or

intra-model traceability)
• It is possible to trace correspondent items between different models (horizontal

traceability or inter-model traceability)

Traceability can be graphically represented. Software items (requirements, design
components and parts of code) are nodes and the traceable dependencies are edges,
together forming a traceability web. It is assumed that if tracing dependencies in the web
is easy, the effort required to understand the software and assess the impact of a proposed
change is decreased.

Traceability links are often provided as a feature in life-cycle oriented case tools (e.g.,
SODOS [Horowitz and Williamson, 1986]), but to our knowledge little has been
published about how to actually use them. It is seemingly a paradox that even though it
is well known that the problem of understanding the relationship between requirements
and code consumes much time and money [Soloway, 1987], current practitioners are not
at all convinced of the usefulness of traceability. As a reaction to the fact that traceability
between requirements and code is unlikely to be found in a real project, a test-case-based
method for finding a starting place (finding primary changes) for further investigations
prior to changing the system was proposed in [Wilde, et. al., 1992].

6.4 A Framework for Impact Analysis

For the purpose of comparing different impact analysis approaches, a framework was
defined in [Arnold and Bohner, 1993]. It should be noted that the framework describes
change propagation approaches. This means that the primary changes are already
determined and the goal is to analyze secondary changes or identify which entities can be
affected by the changes. The approaches covered by the framework are, for example,
determination by incremental compilers of which parts to recompile, as well as changes

30

induced by a maintainer and their potential effects. The framework is useful as it reveals
the underlying mechanisms in most impact analysis approaches available.

The following parts of an impact analysis approach are identified:

• A change
• The artifact object model (the system)
• The interface object model (a model of the system — its interface)
• The internal object model (a model of the system — its internals)
• The impact model (knowledge about change propagation)

We will now describe how the effects of a proposed change on the artifact object model
are determined by using an impact analysis approach. The impact analysis approach is
based on a model of the system, which describes dependencies between system entities.
User interaction is carried out via the interface object model (interface for short). The
interface is used to describe the change to be analyzed. The internal object model
contains information about the objects in the system and the dependencies between them.

The difference between the interface and the internal model is analogous to the difference
between a database and the different views of it. The database constitutes the underlying
representation of the structure and is populated with data. The database is manipulated
via views (for example, a selected set of entities, their relations, and tools for
manipulating them) which constitute the interface to the database. While the internal
object model captures information about the objects and their dependencies, the impact
model captures knowledge about how changes propagate from object to object via
dependencies. The knowledge can be expressed in terms of rules or algorithms.

When the user orders an analysis of the change, the impact analysis approach uses the
definition of the change, as defined using the interface, translates it to the internal object
model, and uses the knowledge in the impact model to propagate the initial change
throughout the internal object model. The result, in terms of a set of affected interface
objects, is presented to the user via the interface. In automated environments (e.g.,
incremental compilers), some of the steps are automated and invisible to the user, while
in semi-automated and manual environments (e.g., case tools with some support for
dependency analysis, but without knowledge and routines for change propagation) much
of the initial analysis work has to be done by the user. In the latter case, the user must
also be prepared to spend time on the result from the impact analysis, as objects presented
as affected might be false positives and, thus, not need to change.

6.5 A Model for Impact Analysis

An instantiation of the framework described above is illustrated in this model for impact
analysis. It is based on the following objects that are needed in order to conduct impact
analysis [Queille, et. al., 1994]:

31

• A representation to model the underlying structure of the system
• Data about the system to populate the model
• A mechanism to propagate the changes through the system

The model is based on dependency graphs that can be collected automatically from the
underlying source code. Impact analysis is regarded as propagation of specific
modification events over the generated dependency network. The propagation of change
is governed by a set of propagation rules.

A modification can either be automatic or potential. Automatic modifications are those
that are certain and are inserted automatically. Potential modifications are conditional
and must be confirmed before they can be inserted. A change of the interface of an
object is, for example, always propagated to its users of the object as an automatic
change. A change of the implementation of an object may affect the interface of the
object, but not certainly. Therefore, this change is propagated as a potential change of the
interface to the object itself. Note that a confirmation of the latter change would trigger
the propagation of the change to the users of the object.

The process is roughly described as:

1. Identify the change set (the initial set of objects that should change)
2. Develop the forest of impacts (for each object in the change set)
3. Identify candidate impact objects using the approach described
4. Assess each candidate object to see if changes are really needed
5. If change is needed, add the object to the change set
6. If change is not needed, proceed with the next object in the change set

This process was used in an experiment. A C program with 2100 lines of code was
analyzed to account for two changes: one subtle bug and one enhancement. The
maintainer was not familiar with the code at the beginning of the study. The results of
the case study show that the tool produced a long list of candidate objects to be assessed,
in fact too many candidates, and not enough time was available to inspect them all.
Instead, the semantics of the change were used to examine whether the change would
invalidate each object. Twenty-five percent of the modules found were important to
understand the program and the change. There were no cases where requirements
impacted each other and the links to code were not precise enough to be useful for cost
estimation in a mechanical way. The tool was regarded useful, even if some
modifications were needed.

Detailed algorithms for producing a conservative prediction of the system-wide effects of
a proposed change in an object-oriented system are provided in [Offutt and Li, 1996].
The prediction is based on a set of data members and member functions that are to be
changed and calculated as the transitive relation between the initial set and all other data
members and member functions in the system. The result from the prediction is a set of
all data members and member functions in the system that are direct or indirect clients,
children, or internally related to the changed set.

32

Rules on the identification of conducted changes and on the subsequent change impact
identification in an object-oriented system are provided in [Kung, et. al., 1994]. It should
be noted that this approach is entirely devoted to support testing and, thus, is applied after
the changes have been made. By using this approach, it is possible to identify the
changed parts and also discover what kind of changes are made, and find the set of parts
of the system that might be affected, at run-time, by the changes. This makes it possible
to limit regression testing to only the affected part of the system.

6.6 Ripple Effects In Documents

Software source code is not the only product that has to be changed in order to develop a
new release of the software product. Normally, many documents are also affected by
new requirements. The user manual is an example of a document that has to be updated
when new user functionalities have been provided. Turver and Munro [Turver and
Munro, 1994] focus on the problem of ripple effects in documentation and note that this
has not been a widely discussed subject in the literature.

A logical model of documentation is defined as consisting of:

• Documentation libraries
• Volume entities
• Chapter entities
• Section entities
• Subsection entities
• Segment entities

Graph theory is used to describe the relations between the various entities and their
hierarchy. The Ripple Propagation Graph is an acyclic graph consisting of
documentation entities and relations.

This technique relies on dependencies between entities. The common dependency used
is the consist-of dependency that, for example, says that a chapter consists of a number of
sections. The conclusion is that, if a particular section is changed, then the chapter it is
part of also needs to be changed. The unusual dependency used in this work is the
thematic dependency, which exists between segment entities. A segment can have many
themes and, likewise, many subjects can be related to the same theme. The ripple effects
may be calculated based on these dependencies using a thematic slicing technique. The
analyst orders a thematic slice over a document by specifying the document and the
theme that is affected by the change. The algorithm produces a thematic slice showing
the sub-graph representing the parts of the document that have to be checked for ripple
effects. To even increase the value of the information, Turver and Munro suggests that
this technique be used in cooperation with a probability connection matrix like [Haney,
1972].

33

6.7 Software Architecture Analysis and Impact Analysis

In larger systems, there is a need to identify how change propagates between architectural
components of the system. One such approach is the Software Architecture Analysis
Method (SAAM). SAAM compares and evaluates systems based on their adaptability.
A software developer might, for example, be interested in adapting a software application
to a specific situation. If this is possible or not, cheap or expensive, depends on the
adaptability of the application. McCrickard and Abowd [McCrickard and Abowd, 1996]
use the following criteria to evaluate adaptability in terms of impact factors. The higher
the impact factor, the more severe the change.

SAAM involves the following activities:

• Describe candidate architectures in terms of high-level components and how they
are connected

• Develop scenarios
• Perform scenario evaluations

Each scenario was “mentally” applied to each application, and all necessary changes
were rated according to the table of impact descriptions, and an impact factor was
consequently assigned to each change. The result from the evaluation is a table showing
the impact factor for each scenario. If the investigated debugger already had a particular
scenario implemented, the impact factor was zero. The table was then used to assess
which debugger was most adaptable regarding the set of scenarios evaluated.

6.8 Experiments on Impact Analysis

An experiment in order to test the effectiveness of a test case-based method’s ability to
locate user functionality in a program was conducted in [Wilde, et. al., 1992]. The
experimenters claim that traceability between requirements and code is unlikely to
identify why, in a real project, there is need to find alternative solutions. A C-program
consisting of 15,000 lines of code was to be modified. The task was to locate the set of
subroutines in the program (total 360) that were central to each of the ten user
functionalities provided by the program. In other words, the intention was to find a
starting place for further investigations prior to changing the system. Two program
experts’ opinions about which subroutines were central for each of the ten user functions
were used for comparison and evaluation of the test case-based method. The result is that
the method generally identifies many more subroutines than the experts, with some
overlap. For example, the method found 11 subroutines, while the experts found three.
The three subroutines found by the experts were included among the subroutines found
by the method. Considering that the program consists of 360 subroutines, the eight extra
subroutines (false positives) should not be a problem and from that viewpoint, the method
could be judged to be useful in locating a starting point for further investigation.

34

An experiment on the effect of design recording on impact analysis was conducted in
[Abbattsista, et. al., 1994]. The objective of the experiment was to investigate how
differences in design recording influence maintenance performance. The task was to
modify a program in three different ways. The modifications were designed so that there
was one correction, one adaptation, and one perfection. Each task was limited to two
hours. Three different documentation situations were accounted for:

• No documentation at all but the source code, which also might be the common
case in real projects

• Standard documentation, which means it is structured in a traditional way, for
example, in the way the IEEE standards prescribe. The standard documentation is
voluminous, but lacks rationale, i.e., information about why the software was
designed that way.

• Documentation based on decisions and traceability links. The standard
documentation is complemented with decisions and traceability. In this
experiment, model dependency descriptors were used. A model dependency
descriptor is based on decisions and captures information about the problem to be
solved, the alternatives, the solution and the justification for it.

The subjects, 23 computer science students, were divided into 9 groups (3x3x3 factorial
design) with the task of modifying an information system written in Pascal. The group
modified different versions of the system (6.6 KLOC - 9.7 KLOC). All three versions
were developed from the same requirements, but different design and code.

Evaluation was conducted by comparing, for each task, the estimated impact set (EIS)
with the actual impact set (AIS). The completeness and accuracy of the estimated impact
were calculated. Completeness and accuracy describe how the two sets (EIS and AIS)
are related to each other and range from zero to one. When the two sets are disjointed
both completeness and accuracy have the value of zero, which reflects a totally
misestimated situation. Completeness increases as more of the actual set is included in
the estimation. It has the value of one when the estimation (EIS) is entirely included in
the actual set (AIS). Accuracy increases as more of the estimation is included in the
actual set. It has the value of one when the actual set (AIS) is included in the estimation
set (EIS). When the two sets are equal, both completeness and accuracy have the value
of one, reflecting the ideal situation.

The overall results (the arithmetic mean over the three tasks for each measure) show that
both completeness and accuracy increase with the amount of documentation available,
thus model dependency descriptors result in the best figures. Examining the results for
each task gives a more varied pattern. The results are always better when using the
model dependency descriptors compared to using standard documentation. For one
measure of six, using the code only gives the best result. For two other measures using
the code only is better than using standard documentation. Interestingly, the time
required to conduct the impact analysis task also seems to increase with the amount of
information available. This can be explained by the fact that all work was carried out

35

manually with no tool support, which is almost always required to navigate among a
large amount of information.

6.9 Summary

Impact analysis is mainly based on dependencies between software entities. These
dependencies are often logical, such as one software module referring to another.
Logical dependencies are used by many change propagation techniques in order to figure
out additional changes. Traceability is another form of logical dependency, but between
requirements and code. When such dependencies exist, they can also be used to model
change propagation. The techniques described in this section can be used to determine
change in embedded systems, but changes based on subtle dependencies must be taken
into account too. Examples of such dependencies are timing constraints. As these are
often not documented, they are hard to model and result in hidden side-effects.

36

7 References

 [1] Abbattsista, F.; Lanubile, F.; Mastelloni, G.; and Vissaggio, G., “An Experiment

on the Effect of Design Recording on Impact Analysis”, Los Alamitos, CA, USA,
IEEE Computer Society Press. International Conference on Software
Maintenance, pp. 253-259, 1994

 [2] Arango, G.; Schoen, E.; and Pettengill, R., "A Process for Consolidating and
Reusing Design Knowledge," Software Change Impact Analysis, Los Alamitos,
CA, USA, IEEE Computer Society Press, pp. 237-248, 1996

 [3] Arnold, R. S. and Bohner, S. A., “Impact Analysis - Towards a Framework for
Comparison”, IEEE International Conference on Software Maintenance, pp. 292-
301, 1993

 [4] Barr, M., "Whither Embedded?," Embedded Systems Programming, vol. 15, no.
2, Feb.2002

 [5] Basili, V. R., "Viewing Maintenance as Reuse-Oriented Software Development,"
IEEE Software, vol. 7, no. 1, pp. 19-25, 1990

 [6] Bohner, S. A. and Arnold, R. S., “Software Change Impact Analysis”, Los
Alamitos, CA, USA, IEEE Computer Society Press, 1996

 [7] Chapin, N.; Hale, J.; Khan, K.; Ramil, J.; and Tan, W.-G., "Types of Software
Evolution and Software Maintenance," Journal of Software Maintenance and
Evolution Research and Practice, vol. 13, pp. 3-30, 2001

 [8] Chen, Z. and Xu, B., "Slicing Object-Oriented Java Programs," SIGPLAN Notes,
vol. 36, no. 4, pp. 33-40, 2001

 [9] Clark, E.; Forbes, J.; Baker, E.; and Hutcheson, D., “Mission-Critical and
Mission-Support Software: A Preliminary Maintenance Characterization”,
Crosstalk 12[6], pp. 17-22, 1999

 [10] Clements, P.; Kazman, R.; and Klein, M., “Evaluating Software Architectures:
Methods and Case Studies”, Addison-Wesley, 2001

 [11] Dart, S. A., “Concepts in Configuration Management Systems”, Third
International Workshop on Software Configuration Management, pp. 1-18, 1991

 [12] Davis, A. M., “Software Requirements: Objects, Functions, and States”, Prentice
Hall, 1993

 [13] Gallagher, K. B. and Lyle, J. R., "Using Program Slicing in Software
Maintenance," IEEE Transactions on Software Engineering, vol. 17, no. 8, pp.
751-761, 1991

37

 [14] Haney, F. M., “Module Connection Analysis - A Tool for Scheduling Software
Debugging Activities”, AFIPS Joint Computer Conference, pp. 173-179, 1972

 [15] Harjani, D. K. and Queille, J., “A process model for the maintenance of large
space systems software”, IEEE. Conference on software maintenance, pp. 127-
136, 1992

 [16] Horowitz, E. and Williamson, R., "SODOS: A Software Documentation Support
Environment-Its Definition," IEEE Transactions on Software Engineering, vol.
12, no. 8, pp. 849-859, 1986

 [17] Jacobson, I.; Christersson, M.; Jonsson, P.; and Overgaard, G., “Object-Oriented
Software Engineering”, Addison-Wesley, Menlo Park, CA, USA, 1992

 [18] Karjalainen, J.; Mäkäräinen, M.; Komi-Sirviö, S.; and Seppänen, V., "Practical
process improvement for embedded real-time software," Quality Engineering,
vol. 8, no. 4, pp. 565-573, 1996

 [19] Kea, H.; Kraft, S.; and Stark, M., “Profile of Software at the Information Systems
Center”, Software Engineering Laboratory Series, SEL-99-001A, 1999

 [20] Kitchenham, B.; Travassos, G. H.; von Mayrhauser, A.; Niessink, F.;
Schneidewind, N. F.; Singer, J.; Takada, S.; Vehvilainen, R.; and Yang, H.,
“Towards an Ontology of Software Maintenance”, Journal of Software
Maintenance and Evolution Research and Practice 11[6], pp. 365-389, 1999

 [21] Koopman, P., “Embedded System Design Issues (the Rest of the Story)”,
International Conference on Computer Design, pp. 310-319, 1996

 [22] Koopman, P., “Tutorial: Embedded System Design Issues (the Rest of the
Story)”, 1996

 [23] Koopman, P., “Embedded Systems in the Real World: Introduction to Embedded
Systems”, 1999

 [24] Kung, D. G. J.; Hsia, P.; Wen, F.; Toyoshima, Y.; and Chen, C., “Change Impact
Identification in Object-Oriented Software Maintenance”, International
Conference on Software Maintenance, pp. 202-211, 1994

 [25] Kuvaja, P.; Maansaari, J.; Seppänen, V.; and Taramaa, J., “Specific requirements
for assessing embedded product development”, International Conference on
Product Focused Software Process Improvement, pp. 68-85, 1999

 [26] Li, J. and Feiler, P. H., “Impact Analysis in Real-Time Control Systems”, IEEE
International Conference for Software Maintenance, pp. 443-452, 1999

 [27] Lientz, B. P. and Swanson, E. B., “Software Maintenance Management”,
Addison-Wesley, 1980

38

 [28] Life Cycle Data Harmonization Working Group of the Software Engineering
Standards Committee of the IEEE Computer Society, IEEE Standard on Software
Maintenance, 1998

 [29] Lindvall, M., "An Empirical Study of Requirements-Driven Impact Analysis in
Object-Oriented Systems Evolution.", PhD Thesis No 480, Linköping Studies in
Science and Technology, 1997

 [30] Lindvall, M. and Sandahl, K., "How Well do Experienced Software Developers
Predict Software Change?," Journal of Systems and Software, vol. 43, no. 1, pp.
19-27, 1998

 [31] Lindvall, M.; Tesoriero Tvedt, R.; and Costa, P., "An Empirically-Based Process
for Software Architecture Evaluation (Accepted for publication)," Empirical
Software Engineering: An International Journal, 2002

 [32] Lindvall, M.; Tesoriero, R.; and Costa, P., “Avoiding Architectural Degeneration:
An Evaluation Process for Software Architecture”, International Symposium on
Software Metrics, pp. 77-86, 2002

 [33] Mäkäräinen, M., “Software Change Management Process in the Development of
Embedded Software”, VTT Publications, pp. –185, 2000

 [34] McCrickard, D. S. and Abowd, G. D., “Assessing the Impact of Changes at the
Architectural Level: A Case Study on Graphical Debuggers”, International
Conference on Software Maintenance, pp. 59-67, 1996

 [35] Moubray, J., “Reliability-Centered Maintenance”, 2nd rev. ed., Industrial Press,
New York, 2001

 [36] Offutt, A. J. and Li, L., “Algorithmic Analysis of the Impact of Changes to
Object-Oriented Software”, Los Alamitos, CA, USA, IEEE Computer Society
Press, International Conference on Software Maintenance, pp. 171-184, 1996

 [37] Pfleeger, S. L. and Bohner, S. A., “A Framework for Software Maintenance
Metrics”, Los Alamitos, CA, USA, IEEE Computer Society Press, Conference on
Software Maintenance, pp. 320-327, 1990

 [38] Pressman, R., “Software Engineering, A Practitioner's Approach”, McGraw-Hill,
1992

 [39] Queille, J.; Voidrot, J.; Wilde, N.; and Munro, M., “The Impact Analysis Task in
Software Maintenance: A Model and a Case Study”, Los Alamitos, CA, USA,
IEEE Computer Society Press, International Conference on Software
Maintenance, pp. 234-242, 1994

39

 [40] Rombach, H., "A Controlled Experiment on the Impact of the Software Structure
on Maintanability," IEEE Transactions on Software Engineering, vol. 13, no. 3,
pp. 344-354, 1987

 [41] Rus, I. and Lindvall, M., "Knowledge Management in Software Engineering,"
IEEE Software, vol. 19, no. 3, pp. 26-38, 2002

 [42] Rus, I. and Zelkowitz, M. V., “Space Shuttle Software IV&V Process Model”,
Fraunhofer Center for Experimental Software Engineering, College Park,
Maryland 20742, Technical Report 00-106, 2000

 [43] Sahin, I. and Zadeli, F. M., "Policy Analysis for Warranty, Maintenance, and
Upgrade of Software Systems," Journal of Software Maintenance and Evolution
Research and Practice, vol. 13 pp. 469-493, 2001

 [44] Sangiovanni-Vincentelli, A. and Martin, G., “A Vision for Embedded Software”,
ACM Press, International Conference on Compilers, Architectures and Synthesis
for Embedded Systems, pp. 1-7, 2001

 [45] Seppänen, V.; Kähkönen, A.; Oivo, M.; Perunka; H., Isomursu, P.; and Pulli, P.,
“Strategic Needs and Future Trends of Embedded Software”, TEKES,
Technology Development Centre of Finland, Technology Review 48/96, 1996

 [46] Shahmehri, N.; Kamkar, M.; and Fritzson, P., “Semi-Automatic Bug Localization
in Software Maintenance”, International Conference on Software Maintenance,
pp. 30-36, 1990

 [47] Soloway, E., “I Can't Tell What in the Code Implements What in the Specs”, The
Second International Conference on Human-Computer Interaction, pp. 317-328,
1987

 [48] Taramaa, J., “Practical Development of Software Configuration Management for
Embedded Systems”, VTT Publications, 1998

 [49] Taramaa, J.; Seppänen, V.; and Mäkäräinen, M., "From Software Configuration to
Application Management," Journal of Software Maintenance and Evolution
Research and Practice, vol. 8, no. 1, 1996

 [50] Tesoriero Tvedt, R.; Costa, P.; and Lindvall, M., “Does the Code Match the
Design? A Process for Architecture Evaluation (Accepted for publication)”,
International Conference on Software Maintenance, 2002

 [51] Tichy, W., “Tools for Software Configuration Management”, Teubner Verlag,
International Workshop on Software Version and Configuration Control, pp. 1-20,
1988

40

 [52] Tip, F.; Jong, D. C.; Field, J.; and Ramlingam, G., “Slicing Class Hierarchies in
C++. Conference on Object-Oriented Programming, Systems, Languages &
Applications”, pp. 179-197, 1996

 [53] Turver, R. J. and Munro, M., "An Early Impact Analysis Technique for Software
Maintenance”, Journal of Software Maintenance and Evolution Research and
Practice, vol. 6, no. 1, pp. 35-52, 1994

 [54] Weiderman, N.; Bergery, J.; Smith, D.; and Tilley, S., “Approaches to Legacy
Systems Evolution”, Software Engineering Institute, CMU/SEI-97-TR-014, 2002

 [55] Wilde, N.; Gomez, J. A.; Gust, T.; and Strasburg, D., “Locating User
Functionality in Old Code”, Los Alamitos, CA, USA, IEEE Computer Society
Press, Conference on Software Maintenance, pp. 200-205, 1992

 [56] Yau, S. and Collofello, J. S., "Some Stability Measurements for Software
Maintenance," IEEE Transactions on Software Engineering, vol. 6, no. 6, pp.
545-552, 1980

41

Appendix A. Case Studies
This appendix presents the case studies of the organizations that develop and maintain
embedded software that we analyzed in this work. Some of these case studies were
published and some were conducted as part of this study. We want to especially give
credit to Minna Mäkäräinen for her case studies [Mäkäräinen, 2000] that provided data
for this study and allowed us to complete this analysis.

The case studies are organized by product type with lessons learned compiled at the end.
The case studies cover the following product areas: Consumer Electronics, DSL-
Modems, Field Devices, Mobile Phones, Airplanes, Satellites, Automobiles, and
Industrial Machines.

A.1. Consumer Electronics

One of the case studies in [Mäkäräinen, 2000] is a company that develops consumer
electronics. Some of their products are used internally; others are sold outside the
company and exported. In 1993, the organization had more than 1000 employees.

The products and the software exist in several versions and many units are sold of each
version. The products are expected to last a long time and the maintenance phase is,
therefore, long. The main goal of the product is to survive under all circumstances.
Much of the logic is devoted to this task. The software is developed and maintained on a
Sun Sparc station and a simulator on a PC was available. Old products that are still
maintained are programmed in Assembler. New products are typically programmed in C
and essential parts in Assembler. Hardware components are expected to change during
maintenance, which may generate changes in the software.

The software architecture has two layers:

• The Core, in which functions common to all applications are located
• The Application-dependent layer, in which the functions of an individual

application are located. The goal is to make the application-dependent layer
as small as possible.

New products are developed based on the experience and improvement ideas derived
from old products. Ideas for new products and new features of existing products come
from the R & D department or customers. Modification of existing products is performed
at the request of external clients. The person who makes the implementation decision for
minor modifications processes requests from customers abroad. Old products used in the
field are usually not updated, but the change is implemented in new products. Change
management procedures during the initial development do not exist. Their processing is
left to individuals and is ad hoc.

42

Official procedures exist for reporting error situations in operating devices located in the
field, but they are not always followed. Instead, service personnel and external customers
who report the errors contact the person responsible for the software, as they often know
the person responsible for the software by name. The person responsible for the software
files the problem reports instead of the original initiator. As a result, not all the errors are
reported. The person reporting the error decides how the reported error situation is
further processed.

The hardware components may age, but the product concept itself does not need
modification. The software must be adapted to the new hardware environment so that the
end user cannot even notice the change in the hardware. Development tools also change
during the lifetime of the software. This kind of adaptive maintenance must usually be
completed before any other kind of maintenance can be undertaken.

The same people perform both software development and maintenance. No formal
quality system or standard is in use. The project manager is responsible for the quality
practices used in the project. The main change management effort is completed after the
release of the product, when the product software has to be updated and modified. The
estimated operational lifetime of software is expected to be 10 years covering some
10,000 machines. The effect is a long maintenance phase.

Some of the problems encountered in maintenance are:

Location of errors is very time-consuming. The most difficult and time-consuming
task is locating errors. This is because the person who found the error is typically not the
one who reports it.

Impact of change in dependent products is hard to determine. The impact of changes
are very difficult to estimate, especially since modifications of the core part of the
software also affect other products using the same core.

Incomplete testing causes serious field errors. Testing is done manually without any
support. Testing takes too much time, and the coverage of the testing procedures is
unknown. Subsequently, the most serious errors are often found when the product is
already in the field.

Inconsistent documentation. The development phase does not produce much
documentation. The maintainer is responsible for updating the documentation manually
if needed. Thus, documentation is often not up-to-date.

Technology changes. New versions of the development tools are typically delivered
several times during the maintenance phase of the software. Problems occur if the
software has not been changed in any way for a long time and there have been several
new compiler releases during the time. It is difficult to use a new version of a tool when
the maintenance action needs to be performed quickly.

43

A.2. Mobile Phones

This case study is based on a telephone interview conducted as part of this work. The
interviewed company develops and manages a set of mobile phone products. The mobile
phones are developed in multiple versions and distributed in many copies.

Reliability and performance are important, but the requirements are not as strict as, for
example, a telephone switch. The customer is, for example, expected to accept rebooting
the modem once in a while, while it would be catastrophic if the switch went down.

Software is developed on a PC. The development environment has facilities for
simulating the target environment, i.e., the phone, so that the software can be run and
tested on the PC. This simulation has, however, limited functionality, and all aspects
cannot be tested in this way. The software for mobile phones is typically developed in C.

The software architecture is layered. The lowest layers are close to the hardware and the
higher layers are increasingly independent of the hardware. The layers that are closer to
the hardware are very hard to develop and maintain. Long experience is required for
these developers as each single line of code can change the behavior of the phone.
Impact analysis is, therefore, extremely important. Currently, an expert group performs
that analysis.

Some of the problems encountered in maintenance are:

Behavior in simulation environment differs from target environment. The
limitations are typically related to real time aspects that are hard to simulate. One such
aspect is that the network requires that a call be answered within a certain time. Another
problem is that memory allocations are done in a different way in the simulated
environment compared to the target environment. This makes it hard to detect memory
problems early.

Debugging on target hardware is hard. It is hard to debug the software once it is
downloaded to the cell phone because any changes to the software cause the system to
behave in a different way. There exists advanced test equipment that allows such
debugging, but this organization has not invested in it yet.

Lack of memory results in code that is hard to understand. Lack of memory is a
problem in mobile phones because mobile phones have to be small and are sensitive to
any increase in cost, weight, and size. This results in the code being optimized for fitting
into a small memory, instead of for readability.

Layers close to hardware are hard to understand, maintain. Code close to hardware
is harder to understand than other code because it deals with the underlying hardware.

44

A.3. Field Devices

This case study is based on an interview conducted by IESE as part of a related study of
an IT department of a company that develops field devices, actuators and positioners.
The products have 500-1000 end users. Typical software development duration is 2 years
and typical maintenance project duration is 2-3 years.

Reliability is seen as the 3rd most important product quality, after functionality and
usability.

The target environment is based on a real-time operating system. The user interface is a
LCD-based device with 3 to 4 buttons for input. The system interfaces with other
systems via Profibus or Fieldbus foundation to PCs, operator stations, and process system
controllers. Also, handheld connection capability exists.

The programming languages are C and assembler.

Three groups (product management, R&D management, QA) are involved in the
maintenance.

If a software update is needed after the product is delivered, the software is replaced and
the embedded software can be diagnosed from a distance.

The Software development process follows an Iterative Incremental model. ISO9000
guides the maintenance process. The following phases of the maintenance process are
distinguished:

• Error detection
• Analyses
• Design
• Implementation
• Regression test
• Release

All maintenance related issues are evaluated each quarter. Maintenance projects are
managed and tracked by regular working groups and problem reports. One team is
responsible for development and maintenance.

Maintenance lifetime is device-dependent (between 3 to 10 years; some 20 years).

45

A.4. Digital Subscriber Line (DSL) Modems

This case study is based on a telephone interview conducted as part of this study with a
company that manages a set of products for telephone and data communication. This
description focuses on their Digital Subscriber Line (DSL) modems. This part of the
company has about 100 employees.

DSL-modems are relatively small products that are distributed in many copies. The
product is expected to remain in operation 2-3 years and then be replaced. Reliability and
performance are important, but the requirements are not as strict as, for example, a
telephone switch. The customer is, for example, expected to accept rebooting the modem
once in a while, while it would be catastrophic if the switch went down.

Software is developed on a PC. The architecture of the product is layered. The goal is to
encapsulate the hardware by software so that less hardware-oriented software can be
developed. This makes it easier to maintain the software. It also makes reuse for similar
products easier.

Development of software for DSL-modems is hardware-oriented, especially the lower
layers that are close to the hardware. Adding hardware, such as memory, means
increased end-user costs so it is avoided if possible. The small size and weight
limitations of the product also put constraints on how the hardware components can be
used.

Generally, the same people who develop the software maintain it. A customer support
organization receives trouble reports from customers and channels it to the development
team who implement them. Many times the bug fixes form part of a larger release, but if
the problem is significant, a special bug fix is released. Change requests and new
requirements come in from both end users and internally from the development team.

DSL-modems are inexpensive, so each developer can have one on the desk for testing.
No simulation environment is necessary. Editing, compiling, and uploading new
software to the test modem is typically accomplished in a couple of minutes.

The software is stored in a flash memory so it can be upgraded after the product is
delivered. During upgrading, the content of the flash memory is replaced by the new
software. This upgrade is done by the end-user and can be somewhat complicated.
There is a risk that more memory than supposed is overwritten during upgrading of
software. A strategy for reducing the risk of overwriting memory is to have a double,
redundant memory. The new software is then uploaded to one of the memory units while
the other one serves as backup. If anything goes wrong, the system falls back to the
backup.

46

From the operator’s point of view, it would be desirable to be able to manage all modems
from a central location due to the somewhat complicated installation and configuration
process. It is also expensive to send out service people.

Some of the problems encountered in maintenance are:

Relatively complex upgrades done by end-users threatens functionality. The
upgrading procedure can be complex. If it goes wrong, it threatens the overall
functionality of the modem. The most important problem is to protect sensitive memory
from being overwritten during upgrading of software.

Cost, size, and weight sensitivity put severe constraints on feasible solutions. Adding
more memory (redundant memory, for example) to make sure upgrades do not go wrong
adds to the cost of the product. Adding more hardware also adds to the size and weight
of the product, which also can be a problem due to such limitations.

A.5. Telecommunication Systems

This case study is based on a description in [Mäkäräinen, 2000]. The company manages
a set of product families in the area of telecommunication. The structure of the
organization is a matrix organization, where people work in departments and groups
according to their domain knowledge. People from different departments form project
groups. The company is relatively large.

The products are typical multi-technological products consisting of several software and
hardware components. The products are developed in an evolutionary manner. Each
development project gets an old baseline, and a set of new requirements and change
requests, as input to the project and develops a new version of the product accordingly.

For new development, the hardware is not stable, but changes during the project.
Separating ‘development’ and ‘maintenance’ phases is not practical, as software
development work is actually change management and seldom consists of building
software from scratch. The post-delivery projects only perform emergency corrections
and user support; the larger enhancements are made in evolutionary development cycles.

Maintenance projects are usually based on existing hardware and mainly deliver a new
release of the software with added, modified or corrected functionalities. The hardware
platform is already stable. The hardware of the product is typically designed
concurrently with the software in project developing new products.

Software development is heavily based on reusing parts of old software. Maintenance
projects typically take a stable enough version of an old product as a baseline for the
development and add new features, modify old features and correct defects.

Development is conducted in an iterative fashion. The software development work is
actually change management, not building software from scratch.

47

Change requests are divided into the following categories:

• Changes to correct defects found in testing. Most of the change requests are
generated throughout the testing phase.

• Changes to correct defects found in reviews. The projects have extensive review
practices. All documents are reviewed before they can be used as the basis for a
release and the minutes of the reviews include the defects found in the review
meeting. When the software designers analyzed these defects, many defects were
found to be so insignificant that they would not have caused problems in later
testing phases.

• Changes to add new features or to modify existing features. Requests for new
features or feature modifications are the most troublesome group of change
requests. Typically, large numbers of requests for new and modified features are
submitted. The projects continuously fail in estimating and preparing for the
requirement-level changes in their project plans. The most common method to
handle requirement-level changes is to eliminate them by postponing or rejecting
them, if possible.

In maintenance projects, the hardware environment and other technology parts are very
stable and do not generate as many requirement-level changes. The requests for new
features or feature modifications mostly originate from customers and marketing.

In projects that develop new products involving new hardware, changes to the
requirements occur quite frequently due to the concurrency of the hardware and software
development processes.

Some of the problems encountered in maintenance are:

Requirement level changes. Requirements tend to be added and changed frequently,
causing many problems in the projects.

Trivial defects consume much time. Reviews reveal trivial, cosmetic defects which
would not cause errors or extra work in later phases. Release tests reveal defects, which
are not real defects. The problem is that detecting and fixing these errors consume much
time.

Code decay due to repetitive reuse. The software is reused repetitively in many
subsequent projects, causing the software to decay. It is, however, hard to detect such
decay.

Traceability is not maintained. Traceability information between a change request
document and the modified document is often missing.

Lack of recorded reasons for modifications. The original motive and effort spent for
each modification are not recorded. The modification is usually recorded, but the reason

48

why it was done is not. Project plans are changed according to new requirements, but no
statement is included why the change to the plan was done.

Lack of learning based on defect data. No systematic practices for analyzing the
change data for learning or improvement purposes exist.

Locating parts to be modified. Locating the parts of the software to be modified and
identifying the ripple effects were reported as being the most time consuming tasks.
Regression testing is difficult because of the complexity of the system.

A.6. Telephone Switches

This case study involves a company that develops telephone switches for regular and
mobile telephone systems. The company employs several thousand people. The case
study is based on an interview conducted by telephone as part of this work.

Telephone switches are part of a complex network enabling people to communicate via
telephones. The highest priority in development of telephone switches is to minimize the
downtime, i.e., maximizing the availability of the switch. The second priority is to
maximize capacity. These two properties are what the buyers of the switch (the operator)
can charge their customers (the call makers) for. The switch is expected to remain in
operation several decades.

Software is developed on Sun workstations. Simulators are available to simulate the
software’s behavior before it is tested on the target system, i.e., the switch. Even real-
time behavior can be simulated in some environments, and the processor speed can be
decreased so that the execution can be analyzed. One of the simulation features is a load
generator that generates a great number of concurrent phone calls so that the behavior can
be analyzed under near real-time conditions.

A proprietary programming language was developed for this purpose. The software of a
switch is typically divided into different abstraction layers, which means that the lower
layers are dependent on hardware, while the higher layers are not. Probably 10-20% of a
telephone switch is related to the core functionality, i.e., to connect telephones, and 80-
90% is devoted to support functions that ensure availability and capacity.

The goal of maximizing availability, or uptime, is often achieved by introducing
redundancy. For example, systems monitor the hardware and the software in order to
determine their status. If the status is not healthy, the execution can be moved to a
backup system. Some switches have identical systems that run in parallel. One system
has control and the other system monitors. They read the same input and execute the
same commands. The only difference is that the output is read only from the system in
control. The effect is that they always are in the same state so if something goes wrong
with the master system, the backup system can take over at any time.

49

Another common strategy is to distribute the functionality over many identical
components that are run in parallel. The difference is that each of the components
contributes to the performance of the switch. If one component fails, the load is
distributed over the remaining components that still are operational.

Lack of memory is generally not a problem. If needed, it is possible to add another
memory module. The increase in size or cost is not a problem.

Most of the development environment (hardware and software) is non-standard.

Upgrading the software in the switch can typically be accomplished without taking down
the system. First the backup system is upgraded, then the control is switched to the
backup system, and last the master system is upgraded. The switch is available through
the network, which means that updating the software can be done remotely.

Some of the problems encountered in maintenance are:

Complexity due to size of the system and many concurrent processes makes it hard
to determine the impact of changes. What makes development and maintenance really
hard is the pure complexity of a switch. The system in itself might not be hard to
understand, but it is very hard to understand the dynamic behavior of the switch when
hundreds of thousands of concurrent connections are made. Very few people understand
the whole system, and it is very hard to determine the impact of a suggested change.

Specialized equipment requires educated and experienced people. Most of the
development environment (hardware and software) is non-standard. This means that
little knowledge and experience sharing can occur between the company and the outside
world. Likewise, it takes a long time to get new people up to speed due to the fact that
they often have no or little experience from similar environments.

Limited access to target system. The equipment is very expensive, which means that
each developer cannot have access to the switch, the target environment. Instead,
developers have to rely on environments for simulation and testing that do not behave
exactly as the target environment. Some tests cannot be conducted in the simulated
environment but must be made in full-scale tests with 100,000 concurrent callers.

A.7. Automobiles

This case study is based on an interview conducted by IESE as a part of a related project
of a large organization that designs and manufactures automobiles.

Automobiles typically last very long, e.g., some law requires companies to provide
maintenance for 15 years. The number of end-users is very large. Maintenance of
embedded software over a long period of time bears the risk that hardware components,
as well as related development tools, are not available anymore.

50

Reliability is one of the top quality characteristics for automobiles, e.g., the Motor
Industry Software Reliability Association (MISRA3) provides assistance to the
automotive industry in the application and creation of safe and reliable software within
vehicle systems.

They use a model-based development with MathLab Simulink. The programming
language used is C.

Software is a functional application, where UI and middleware control software are part
of the platform. Physical parts of the embedded software can be actuators, sensors and
EPROM.

The development group is responsible for maintenance. Inputs to the new product
include problem reports from the field, changes to legal norms, feedback from internal
long-running test drives, and changes to related systems. The software can be upgraded
after the product is delivered. The law requires that software has to be replaced. It may
also be possible to diagnose and re-program software from a distance.

This organization defines maintenance in the following way:

• Corrective: to correct bugs
• Adaptive: to adapt to a new environment or usage scenario
• Perfective: to improve a quality attribute
• Preventive: to avoid problems

The company follows the incremental V-model for both the development and
maintenance phases. Maintenance is seen, on the one hand, as the continuation of the
(incremental) development process, which is usually performed by the same team with
reduced effort. On the other hand, maintenance is not different from development: First,
development projects always build upon existing software, and second, corrections and
adaptations are mostly also relevant to the software under development. There is no
difference in managing and tracking the maintenance project. Inter-group coordination is
taken care of by a device responsible for both hardware and software. This organization
defines maintenance in the following way:

• Proactive: Releases in new countries, improvements
• Reactive: requirements out of the field, changes to laws or regulations

Like development activities, these activities are synchronized in the overall system
context (i.e., the car). Proactive maintenance is seen as important in an embedded
context because well-planned maintenance activities support the goal of keeping the
structure of the system as clear and understandable as possible, which is key to ensure the
required safety of the system during its whole lifetime (i.e., 15 years).

3 http://www.misra.org.uk/

51

http://www.misra.org.uk/

Some of the problems encountered in maintenance are:

Lack of good documentation. Technically, maintenance requires documentation being
used and updated, but it is never good enough and it shows the obvious, not the relevant.

Keeping track of different versions of products and tools. It is not enough to put
software under configuration management, but also tools, compilers, and documentation.
This can be especially complicated if a contractor did part of the work.

Knowledge disappears regarding tools and languages of older products. Knowledge
must be managed so that, if necessary, the organization remembers how to use languages
and tools that form part of older products.

Systems are built on several modeling styles and knowledge gets lost when old styles
are forgotten. Embedded software is often developed in a model-based style, e.g.,
Statemate-Simulink or Matrix-X. Modeling tools and approaches change (“trends”) -
knowledge gets lost. Maintaining systems that were built on several modeling styles is a
problem.

Changes cause ripple effects that are hard to determine. In complex systems based
on both hardware and software that interact closely, software modules are spread all over.
It is hard to determine the ripple effects in this type of environment.

It is very hard to decide whether the hardware or the software caused a failure in
practice. There are several reasons for this. Information in failure reports of the software
is often not sufficient to allow the cause of a failure to be identified clearly. Additionally,
system failures may be difficult to reproduce and it is difficult to judge whether the
hardware caused the failure or whether the software was not “intelligent” enough to
compensate for existing hardware limitations.

A.8. Space Instruments

This is another case study presented in [Mäkäräinen, 2000]. The company is an
aerospace organization that acts as a project subcontractor with expertise in the fields of
software, electronics, system analysis, and small satellite technology. It has about 15
employees.

The company develops unique space instruments for a station that is launched into space.
The station is completely independent and cannot be controlled from earth. The
embedded software cannot be changed after take-off so, in essence, there is no traditional
maintenance phase. The development time is long to ensure that the software is free from
defects and as reliable as possible.

No information is provided regarding how long the system is expected to last, but this is
relatively unimportant due to the fact that the software cannot be updated after launch.

52

Test coverage and reliability of the corrections have to be very high because corrections
and modifications are impossible to install when the station has been launched into space.

The software is developed on a PC. The programming languages are normally Ada for
flight software and C/C++ for other software. A mix of C and Assembler is also common.

It runs separate processes for each instrument. Every hardware component has a driver.
Some of the components are connected directly to the processor, some through a bus. A
simple multitasking operating system has been developed, but can probably not be reused
due the fact that it is specific to hardware and software.

Each project is unique, so instruments are always built from scratch. During the initial
phases of the project, the changes are mostly requirement-level changes. The
specifications get more detailed as knowledge accumulates and optimal implementation
solutions are found. The environment typically becomes more stable as the project
proceeds. In the testing phase, the nature of the changes shifts to corrective work.

Maintenance of the software is not possible after delivery, and thus change management
is relevant only during the development of the product.

Changes (corrections) occur at two levels:

• Contractor level: These changes are recorded using problem report forms and
are classified. The change control board, drawn from both the contractor and
subcontractors, manages decisions regarding these changes.

• Subcontractor level: These changes are made informally. These include errors
found in the testing phases and modifications on the internal interfaces of the
device constructed by the subcontractor.

Software is developed in a PC environment. No automated test generators, configuration
management tools, or metrics tools are used during the development. The RCS
configuration management tool is used.

Integration with the other components of the station has been made using testing sessions
to test the interfaces of the components. Components have been tested separately during
the development phase, and all of them were combined after the first delivery of the
software.

Some of the problems encountered in maintenance are:

Requirements change. Requirements kept changing during the project and, thus,
changes made to the original requirements (which have not been communicated
effectively to all partners) caused problems in the integration phase.

Lack of maintenance of documentation results in inconsistencies. The specifications
and requirements for the software have changed frequently. Most changes have been

53

made directly to the source code. Sometimes document updates have been omitted
because of frequent changes that resulted in inconsistent documentation.

Version control of the code has been difficult. No automated configuration
management tools have been used during the prototyping phase. Generally, one person
has completed the programming of each module and when someone else has made
changes in the code, version control of the code has been very difficult.

Hardware-oriented code is hard to understand. As the software was very hardware-
oriented, the source code was complicated and hard to understand. No tools for
analyzing, restructuring or simplifying the code have been used.

High reliability requirements and unsystematic methods make testing time-
consuming. Because of the requirement for high reliability of the software, a lot of time
is spent in testing. No systematic method to ensure that the coverage of the case software
test is complete and sufficient has been used.

Concurrent development delays system integration. Because the product parts are
designed and built simultaneously by separate subcontractors, the integration of the
devices cannot be completed until each partner has achieved a stable version of their
parts.

A.9. Airplanes

This case study is based on a telephone interview conducted as part of this work with a
large company that develops and manufactures airplanes.

Operators distributed worldwide use the airplanes mainly to transport people. The most
popular plane was developed to meet regional airline operators' requirements for the
highest possible standard of passenger comfort at minimum cost. The plane entered
service in the mid 1980s following an intensive four-year development and certification
program. The product has been continually developed and improved since then, driven
by engineering refinements, responses to customer needs and airworthiness requirements.

The software has high reliability requirements due to the fact that failure can cause loss
of human life.

Development and maintenance of software is done in a PC environment. Several
different simulation systems are available so that the software can be tested in
environments that are closer and closer to the target environment, the airplane itself.

The system is really a system of systems involving many different processors, many of
which run at different speeds. The hardware is non-standard, developed specifically for
this purpose.

54

Quality is of highest importance. The code is, for example, inspected often and
thoroughly, and a high price is paid in that productivity is relatively low.

Some of the problems encountered in maintenance are:

Real-time aspects cannot be simulated. Real-time aspects do not show in the PC
environment. Some of these aspects can be spotted in more advanced flight simulators,
but the most intricate ones do not manifest until operation on the airplane.

Complexity due to the fact that many different computer systems are involved. A
major difficulty for software developers in this environment is the complexity of different
computer systems that communicate with each other, and part of this problem is the fact
that different systems run at different processor speeds. One system might run at one
speed, another at half the speed, and yet another one at a quarter of the speed. Data is
moved back and forth between these systems and it can easily seem as though the data
was transferred correctly when actually, in real time, not enough time was devoted for the
memory cells to stabilize. This makes it very easy to make mistakes.

Specialized systems require specially trained and experienced people. Most of the
systems, including the hardware, are developed specifically for one purpose, which
creates problems with staffing. A long training process is, for example, necessary for
new people not used to the environment.

Changes in the technical configuration cause software changes. Changes in the
technical configuration are a big problem because they cause changes in the software.
Therefore, the strategy is to stick to a given technology as long as possible. The selected
technology has to be available for a long time.

A.10. Satellites

This case study is based on a description in [Kea, et. al., 1999]. The case study company
designs and manufactures satellites to be launched into space.

All software on board the satellite is classified as embedded systems and typically has the
characteristics of being real-time and dealing with communication or numerical
computation.

The satellite is not safety critical, but the system needs to be reliable because it is not easy
to reboot, and software failure is likely to cause loss of system or mission.

The major programming languages for development of embedded systems were reported
to be C (90 %) and Assembly (10%).

Specialty hardware is an issue, but a significant subset use standards or common products
such as a 1553 or 1773 bus, VxWorks RTOS, X86 chips, etc.

55

The different software systems were classified into five different categories:

• Embedded Systems (ES)
• Mission Ground Systems
• Information Management Support
• Science Processing
• Advanced Technology

The selection of processes and standards to be followed for software maintenance varies
significantly from project to project. Testing methods used by teams working on
embedded systems were Functional testing, Regression testing, Software simulators, Unit
testing, Build testing, and Acceptance testing.

The current understanding of embedded software maintenance is that it is similar to
regular software maintenance, only more so. That is, no specific tools or techniques that
you would use for embedded vs. regular maintenance have been found yet. The main
difference is that many of the normal constraints are a lot tighter.

One of the problems encountered in maintenance is:

Remote, disconnected system. It is not easy to reboot and software failure is more
likely to cause loss of system or mission.

A.11. Space Shuttles

This case study is based on a description in [Rus and Zeikowitz, 2000].

The company is an independent unit of a Space Agency and provides independent
verification and validation services for it. The company strives to improve software
safety, reliability, and quality of Space Agency programs and missions through effective
application of Systems and Software Independent Verification and Validation (IV&V)
methods, practices, and techniques. The company provides tailored technical, program
management, and financial analyses for programs, industry, and other agencies, by
applying software engineering "best practices" to evaluate the correctness and quality of
critical and complex software systems throughout the system development life cycle. It
has 24 employees.

The Space Shuttle software is onboard flight software. The Space Shuttle program is
comprised of four orbiters: Endeavor, Atlantis, Columbia and Discovery. Software
builds, or operational increments (OI), are used for repeated missions on all four orbiters.
Shuttle software development has constraints unique to the four space orbiters. However,
mission safety and reliability are utmost criteria for all missions and each new software
release. Hardware must also be reliable and withstand the rigors of space travel.
Because of this, software is constrained to executing on legacy hardware with limited
memory.

56

Failures of Space Shuttle software can both cause loss of human life and economically
large losses.

The target environment is composed of general purpose computers (GPCs), AP-101S
from IBM. GPCs consist of a central processor unit and an input/output processor in one
avionics box instead of the two separate CPU and IOP avionics boxes of the old GPCs.

The Space Shuttle software is written in High-order Assembly Language (HAL/S).

Embedded software consists of Primary Avionics Software System (PASS) and the
Backup Flight Software (BFS) flight software subsystems for the space shuttle. Critical
subsystems are ascent GN&C, entry GN&C, on-orbit GN&C, sequencing, data
processing system, and main engine controller.

The hardware is non-standard, developed specifically for this purpose.

The customer takes care of maintenance. Input to the new product comes from the needs
of coming missions and experiences from past missions. The software is upgraded after
the product is delivered. Core functionality is reused and enhanced by extensions that
differ from mission to mission.

A development cycle takes approximately 16 months.

In the definition phase, flight software change needs for the new mission, and also from
Operational Increments (OI) operation, evaluation, and review (discrepancy reports -
DRs), are identified. The flight software change proposals are analyzed, and if they are
approved, they are changed into change requests (CRs). Each CR is assigned a champion
(in a development organization) to analyze the CR impact, risk, resources needed and to
recommend a development plan. Results of analyses and recommendations are
forwarded to be included in a formal requirements inspection process. Issues that
identify risk associated with hazards, integration, and implementation are documented as
problem reports. The formal requirements inspection process that follows includes the
developer stakeholders. This facilitates developer understanding of the change
requirements, the proposed approach relative to reuse, and verification and validation
requirements.

The next phase is Development, which consists of design, coding and unit/module testing
of the approved CRs. The design and code are inspected. These activities are performed
by developers, and the result is a build that has the complete required functionality.

After a build is completed, the developers perform levels 1,2, and 3 testing; L1 – Unit
testing (equations, paths, range of values), L2 – Module testing (user interface, user
commands, functional interface), and L3 – Functional system level testing (multiple
functions, timing, system interfaces).

57

The developers hand the product over to the Developer V&V (which is a separate group
in the development organization) and to the IV&V. Developer V&V performs Developer
verification testing (Functional verification, and Performance verification). This ends at
CI (Configuration Inspection). CI is a formal review milestone, after which the CI loads
are released to customer.

The Mission Preparation begins with the release of the PASS (Primary Avionics
Software) and BFS (Backup Flight Software) OI loads from the development contractors.
The mission preparation phase requires approximately 9 months from the delivery of the
OI loads until the first STS mission is flown using the new OI. This phase has two
cycles: Engineering Cycle (or initial reconfiguration) and Flight Cycle. Besides load
configuration, Developer Validation Testing (final reconfiguration load and flight
equivalent GPC – not real time simulation), Integrated Avionics Testing (flight software,
orbiter avionics hardware, support systems interface) and Operational testing (mission
plan/procedure, mission training – real time simulation) are performed. Three weeks
prior to flight, the Software Readiness Review (SRR) is held. Two more reviews (FSS)
are held two weeks and respectively two days before flight. Five days prior to launch, the
orbiter MMUs (mass storage – magnetic tapes) are dumped and compared by the
developer to the mission baseline load.

Maintenance of the flight software during the mission is, in principle, possible but, in
practice, not done for security reasons.

58

Appendix B. Resources
Readers interested in more information on embedded software maintenance, either in
order to learn or to improve their embedded maintenance software processes, can find
useful information available on the web. We have listed some the resources we found
during this study, but many more are available. The description is taken, in many cases,
directly from the Web. The fact that a resource is listed here does not indicate any
evaluation, judgment, or endorsement from Fraunhofer Center Maryland or DACS.

B.1. Magazines, Journals, and Conferences

Embedded Systems Programming (ESP): http://www.embedded.com/

This web site brings together various resources related to embedded software.
Embedded Systems Programming is, for example, a monthly magazine for
engineers, programmers, and project leaders who build micro controller and
embedded microprocessor-based systems.

PC/104 Embedded Solutions Magazine: http://www.pc104-embedded-solns.com/

The PC/104 Embedded Solutions Magazine is targeted to developers of embedded
systems that use PC/104 technologies and non-backplane modular embedded
solutions. The purpose of the magazine is to bring PC/104-related business,
technology, applications, and product news to engineers who are developing
embedded systems.

Embedded Linux Journal: http://embedded.linuxjournal.com/

This magazine focuses on the use of Linux in embedded systems.

Embedded System Engineering: http://www.esemagazine.co.uk/

This is an online resource for embedded systems based in the UK.

Embedded System Conferences: http://www.esconline.com/

These conferences are being held each year in San Francisco, Chicago, Boston,
and many European and Asian countries. Some of the features are tutorials, paper
presentations, panel discussions, exhibitions, and lectures, etc.

List of conferences: http://www.cera2.com/WebID/embedded/conf/blank/conf/1-a-e.htm

59

http://www.embedded.com/
http://www.pc104-embedded-solns.com/
http://embedded.linuxjournal.com/
http://www.esemagazine.co.uk/
http://www.esconline.com/
http://www.cera2.com/WebID/embedded/conf/blank/conf/1-a-e.htm

B.2. Notification Services and Tools

eCLIPS is an email alert service from eg3.com. The user selects which keywords to
receive alerts for. Keywords can be, for example, “embedded” and “software
maintenance”. Whenever eg3.com finds new seminars, white papers, Web sites, free
software, etc., for the particular keywords, an email alert is issued.

There is a list of topics related to Embedded Software, Embedded Systems, Embedded
Chips, and Embedded Networking.

For more information: http://www.eg3.com/eCLIPS/

B.3. Tools

TASKING products are tools for embedded software development that bring together the
advanced software design technology needed to compete in the embedded
communications era. The TASKING integrated development environment, compiler,
debugger, embedded Internet and RTOS offerings support a wide range of Digital Signal
Processors (DSPs) and 8-, 16- and 32-bit microprocessors and micro controllers for all
areas of embedded development.

Altium's TASKING products include:

• Development tools for a wide range of DSPs and 8-, 16-, and 32-bit devices
• Comprehensive Embedded Development Environment
• Target-specific, highly optimized compilers
• Powerful and easy-to-use debug tools
• Integration with RTOS and TCP/IP solutions
• Embedded Internet software solutions

For more information: http://www.tasking.com/
and http://www.cera2.com/navi/embed.htm

B.4. Consulting and Training

B.4.1. Embedded Research Solutions

“Embedded Research Solutions’ (ERS) vision is to provide contracting, consulting,
training and research services for customers who want to transition from their current
design practices to using component-based technology. ERS is further committed to
developing and delivering the real-time component technology that enables system-on-a-
chip applications and small embedded systems to use a building-block approach for
creating complex software applications.”

60

http://www.cera2.com/goto.cgi?pageid=embe/196&vendor=eg3x&slot=record&url=http://www.eg3.com/eCLIPS/
http://www.tasking.com/
http://www.cera2.com/navi/embed.htm

ERS provides expert consulting on several topics, including real-time systems design and
analysis, embedded systems architecting, domain-specific component-based software
(i.e., software building block) solutions, re-engineering legacy code, using and modifying
real-time operating systems, multi-rate cyclic executives, and device driver design.

For more information: http://www.embedded-zone.com/

B.5. The Embedded Community

The Embedded Community is a forum for service providers to interact directly with
individuals and companies in the embedded marketplace. It provides help to:

• Source a project
• Find consultants
• Educate about Embedded Systems

It also provides a search engine with embedded hardware and software categories. The
user can narrow down the search using options like products and support, industry and
marketing. The search results are conferences, journals, papers, magazines, etc., that are
related to the query.

For more information: http://www.embeddedcommunity.com/

B.6. Applied Research: VTT Electronics

VTT Electronics’ main mission is to create new technologies and visions to assist the
clients in developing new products and technology solutions.

VTT, Technical Research Centre of Finland, is the largest contractual R&D organization
in the Nordic countries. VTT is an impartial expert organization that carries out technical
and techno-economic research and development work. VTT develops technologies both
to improve the competitiveness of companies and the basic infrastructure of society and
to foster the creation of new businesses.

Within VTT Electronics, experience regarding telecommunication solutions and
applications and embedded systems has been gained from numerous research and
industrial projects. Current research is focusing on the development of product line
architectures and services architectures for future telecommunication systems, as well as
on the design, analysis and testing methods needed in the application development. VTT
Electronics' research groups in the embedded software research area comprise expertise
on software product quality, software process improvement and measurement,
component-based software engineering, development of product line architectures and
middleware services for networked embedded systems, as well as the design and analysis
methods needed in the application development.

61

http://www.embedded-zone.com/
http://www.embeddedcommunity.com/

For more information: http://www.vtt.fi/

B.7. University Research

B.7.1. Software Engineering for Real-Time Systems (SERTS)

“The Software Engineering for Real-Time Systems (SERTS) Laboratory is leading
University of Maryland's efforts in advancing software technology for embedded
systems.”

“Industry has a significant demand for engineers experienced in developing embedded
real-time software. In fact, the growth of the embedded systems market has been so
substantial that some experts cite a 25% growth rate each year, in an annual market of
more than $10 billion. The training offered by universities in embedded systems,
however, is growing by only a fraction of that amount. As a result, many of the people
creating embedded software are engineers trained in other areas - most notably hardware
design, mechanical engineering, controls, or communications. This lack of software
engineering expertise leads to lower quality software and higher development costs.

There are two fundamental methods of improving this serious manpower problem:

• Educate more engineers in the field of embedded real-time software
• Reduce the complexity of embedded software, so that less expertise is needed to

build the systems

The first method is addressed by the educational goals in SERTS, while the second
method is addressed by the research objectives.”

For more information: http://www.ece.umd.edu/serts

B.7.2. Institute for Complex Engineered Systems (ICES)

“The Institute for Complex Engineered Systems (ICES) is a strategic initiative for
pursuing multidisciplinary research on Complex Systems, both within the College of
Engineering and across colleges at Carnegie Mellon. The ICES vision is "to develop
enabling technologies and systems that seamlessly connect people with their physical and
information environments.”

For more information: http://www.ices.cmu.edu/frames.html

B.7.3. Embedded and Reliable Information Systems Laboratory (ERISL)

“In the Embedded and Reliable Information Systems Laboratory, our vision is to develop
systems and tools that fundamentally improve the effectiveness of embedded computer
and networking technologies. To accomplish this requires an extremely broad view of

62

http://www.vtt.fi/
http://www.ece.umd.edu/serts
http://www.ices.cmu.edu/frames.html

systems, and an appreciation for the complete life cycle of products and processes.
Connections among industrial sponsors, class projects, and university researchers are
emphasized in order to bring together real-world issues and cutting edge solutions for
training tomorrow's engineers.”

For more information: http://www.ices.cmu.edu/frames.html

B.7.4. Embedded Systems Laboratory (ESLAB)

The Embedded Systems Laboratory, Department of Computer and Information Science,
Linköping University, Sweden (ESLAB) conducts research on the design and test of
embedded systems. Some of the relevant research areas are:

• Testability Support in a Co-design Environment – COTEST

The main objective of the project is to assess whether new high-level test
techniques (whose application has, up to now, been limited to RT-level
descriptions) can be suitably extended to provide the designer with some support
concerning test issues when a behavioral-level description of the system is
available.

• Self-Test in Embedded Systems

The main goal of the project is to develop efficient self-test methodologies and
tools to act as an enabling technology for the design of competitive embedded
systems, which will be of great importance for a wide spectrum of Swedish
industries.

• Hardware/Software Co-Design

The main objective of this research is to develop methods and tools for the
description, evaluation and partitioning of application-specific computer systems
which consist of both hardware and software components.

• Design of Heterogeneous Embedded Systems with Distributed

Hardware/Software Components

“The main focus of the research is to develop hardware/software co-design
techniques for real-time applications implemented as distributed embedded
systems. Our long-term objective is to develop techniques and tools to allow the
designers to quickly explore the different design alternatives and find a cost-
effective solution for a mixed hardware/software implementation of a given real-
time system.”

For more information: http://www.ida.liu.se/~eslab/

63

http://www.ices.cmu.edu/frames.html
http://www.ida.liu.se/~eslab/

B.7.5. RISE

“The Research Institute for Software Evolution (RISE), formerly the Center for Software
Maintenance (CSM), was established in April 1987, at the University of Durham,
England. It is the first such center worldwide to concentrate its research on software
evolution. Informally, software evolution refers to all those activities that take place after
a software product has been delivered to the customer, but the more formal definition
used by the RISE is:

Software evolution is the set of activities, both technical and managerial, that
ensures that software continues to meet organizational and business objectives in
a cost effective way.”

The institute publishes a journal named “Journal of Software Maintenance” and holds
seminar series and workshops in relevant fields.

For more information: http://www.dur.ac.uk/CSM/

B.8. Research projects: DARPA

B.8.1. Model-Based Integration of Embedded Software (MoBIES)

The program will create a new generation of system/software co-design technology,
which is highly customizable and composable according to the specific needs of different
application domains. Composability means that system level properties can be
sufficiently and verifiably predicted from subsystem properties.

For more information: http://www.darpa.mil/ito/research/mobies/projlist.html

B.8.2. Program Composition for Embedded Systems (PCES)

“Program Composition for Embedded Systems (PCES) is developing new technology for
programming embedded systems with greatly reduced programming effort and reduced
brittleness of the resulting code. Programs for real-time embedded weapons systems are
highly tailored to ensure cross-cutting properties, such as synchronization of concurrent
operations; processor fault isolation; sensor input and actuator output timing constraints;
and safe and efficient cache, register, and memory management. This project is
developing technology for programming these cross-cutting aspect properties and for
introducing them into the core codes that implement functional requirements of the
system. The goal is a set of reusable software for aspect suites, supported by software
analysis and composition tools that enable (a) reasoning about the complex interactions
and tradeoffs among crosscutting aspects and (b) safe code manipulation.

For more information: http://www.darpa.mil/ito/research/pces/projlist.html

64

http://www.dur.ac.uk/CSM/
http://www.darpa.mil/ito/research/mobies/projlist.html
http://www.darpa.mil/ito/research/pces/projlist.html

65

B.8.3. Networked Embedded Software Technology (NEST)

“The Networked Embedded Systems Technology (NEST) program will enable ‘fine-
grain’ fusion of physical and information processes. The quantitative target is to build
dependable, real-time, distributed, embedded applications comprising 102-105 simple
computing nodes. The nodes include physical and information system components
coupled by sensors and actuators.

The program will create code bases, tools and reference implementations for the
emerging generation of networked embedded systems, which are based on MEMS sensor
and actuation technology, and on the rapid progress in photonics and communication.

For more information: http://www.darpa.mil/ito/research/nest/vision.html

http://www.darpa.mil/ito/research/nest/vision.html

	Introduction
	Lack of Research
	Software Maintenance vs. Embedded Software Maintenance
	Organization of This Report

	Embedded Software
	Embedded Systems
	Embedded Software

	Software Maintenance
	Corrective Software Maintenance
	Enhancements and Evolution
	Software Maintenance Process Models
	V-model Type Maintenance Processes
	The AMES Maintenance Process Model

	Maintainability

	Embedded Software Maintenance
	Challenges in Embedded Software Maintenance
	Main Issues Found in Case Studies
	Unstable requirements
	Technology changes
	Location of errors
	Impact of change
	Need for trained and specialized people
	Lack of documentation
	Simulation environment versus target environment
	Hardware constraints
	The testing process
	Other systems specific problems

	Potential Solutions
	Maintainability
	Reliability Centered Maintenance
	Software Configuration Management (SCM)
	Technical Management of External Teams
	Impact Analysis

	Impact Analysis
	Different Flavors of Impact Analysis
	Ripple Effect Analysis and Dependency Analysis
	Traceability Approaches
	A Framework for Impact Analysis
	A Model for Impact Analysis
	Ripple Effects In Documents
	Software Architecture Analysis and Impact Analysis
	Experiments on Impact Analysis
	Summary

	References
	Case Studies
	Consumer Electronics
	
	
	Some of the problems encountered in maintenance are:

	Mobile Phones
	Field Devices
	Digital Subscriber Line (DSL) Modems
	Telecommunication Systems
	Telephone Switches
	Automobiles
	Space Instruments
	Airplanes
	Satellites
	Space Shuttles

	Resources
	Magazines, Journals, and Conferences
	Notification Services and Tools
	Tools
	Consulting and Training
	Embedded Research Solutions

	The Embedded Community
	Applied Research: VTT Electronics
	University Research
	Software Engineering for Real-Time Systems (SERTS)
	Institute for Complex Engineered Systems (ICES)
	Embedded and Reliable Information Systems Laboratory (ERISL)
	Embedded Systems Laboratory (ESLAB)
	RISE

	Research projects: DARPA
	Model-Based Integration of Embedded Software (MoBIES)
	Program Composition for Embedded Systems (PCES)
	Networked Embedded Software Technology (NEST)

