Using Defect Tracking and Analysis
to Improve Software Quality

A DACS State-of-the-Art Report

Contract Number SP0700-98-D-4000
(Data & Analysis Center for Software)

Prepared for:

Air Force Research Laboratory -
Information Directorate (AFRL/IF)
525 Brooks Road
Rome, NY 13441-4505

Prepared by:
Michael Fredericks ard Victor Basili
Experimental Software Engineering Group
University of Maryland
College Park, Maryland USA
fred@cs.umd.edu, basili@cs.umd.edu
and
DoD Data & Analysis Center for Software (DACS)
ITT Industries - Systems Division
Griffiss Business & Technology Park
775 Daedalian Drive
Rome, NY 13441-4909

P.O. Box 1400
Rome, NY 13442-1400
— . — (315) 334-4905, (315) 334-4964 - Fax

’ w cust-laisn@dacs.dtic.mil

Do Dt & Analysis Center fior Sofiwane http://www.dacs.dtic.mil

DoD Data & Analysis Center for Software (DACS)

The Data& Analysis Center for Software (DACS) is a Department of Defense (DoD) Inform
Analysis Center (IAC), administratively managed by the D&f@ashnical Information Center (DTIC
under the DoD IAC ProgranThe DACS is technically managed Air Force Research Laboraton)

4tion

Information Directorate (AFRL/IF) Rome Research Site. ITT Industries - Systems Division mapages

and operates the DACS, serving as a source for current, readily available data and info

concerning software engineering and software techgolog

fmation

mailto:cust-laisn@dacs.dtic.mil
http://www.dacs.dtic.mil/
http://www.dacs.dtic.mil/

REPORT DOCUMENTATION PAGE o o 8

Public reporting burden for this collection is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project, (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
14 November 1998 N/A

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A State-of-the-Art-Report for Using Defect Tracking and SP0700-98-11000
Analysis to Improve Software Quality

6. AUTHORS
Michael Fredericks

Victor Basili

7. PERFORMING ORGANIZATIONS NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Experimental Software Engineering Group REPORT NUMBER

University of Maryland, College Park, Maryland and

ITT Industries, Systems Division, 775 Daedalian Drive DACS-SOAIR-98-2
Rome, NY 13441-4909

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Defense Technical Information Center (DTIC)/ Al AGENCY REPORT NUMBER

8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060
and Air Force Research Lab/IFTD NAA
525 Brooks Rd., Rome, NY 13440

11. SUPPLEMENTARY NOTES)
Available from: DoD Data & Analysis Center for Software (DACS)

775 Daedalian Drive, Rome, NY 13441-4909

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, distribution unlimited UL

13. ABSTRACT (Maximum 200 words)

Defect tracking is a critical component to a successful software quality effort. In fact, Robert Grady of
Hewlett-Packard stated in 1996 that “software defect data is [the] most important available management
information source for software process improvement decisions,” and that “ignoring defect data can lead to
serious consequences for an organization’s business” [Grady96]. However, classifying defects can be a
difficult task. As Ostrand and Weyuker paraphrased a 1978 report by Thibodeau, defect classification schemes
of that time period often had serious problems, including “ambiguous, overlapping, and incomplete categories,
too many categories, and confusion of error causes, fault symptoms, and actual faults.” [OstrandWeyuker84].
Yet the classification of defects is very important, and by examining the lessons learned by other organiza-
tions, one hopes to be in better position to implement orimprove one’s own defect classification and analysis
efforts. To this end, this report discusses five defect categorization and analysis efforts from four
different organizations. This list of organizations should be taken as a sample of the range of schemes
covered in research and in industry over the previous twenty-five years. The analysis efforts at these
organizations generally focus on one of three goals: finding the nature of defects, finding the location of
defects, and finding when the defects are inserted, with the intent of using this information to characterize

or analyze the environment or a specific development process. At the conclusion of this discussion, the
results of two surveys covering the defect classification and analysis practices of approximately 30 companies

are presented. These surveys give some insight into how industry is currently handling this complex issue.
Finally, section Ill of the report presents some suggestions of how companies could begin or expand their
defect classification efforts.

14. SUBJECT TERMS 15._NUMBER OF PAGES
Defense Analysis, Software Testing, Software Engineering, 27
Technology Evaluation 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION | 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unglassified UL

NSN 7540-901-280-5500 Standard Form 298 (Rev 2-89)

Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
Fig 6.
Fig 7.
Fig 8.

DACS

Table of Contents

FaT i f0T0 18 Tox (o] o NP PP 1

Defect Classifications...........ccoovveviiiiiiii e 3

A. University of Maryland and NASA-Goddardoeuuuiiiiiiiiiininieeeeeee, 3

B. Sperry Univac - “Attribute Categorization Scheme”ccccevvvvviinnnnne 7

C. Hewlett-Packard - “Company-Wide Software Metrics”vvveeennnn. 9

D. IBM — “Defect Prevention”ccccooiiiiiii i 12

E. IBM — “Orthogonal Defect Classification”ccoooevviiiiiiiiiiiiiiiiiinenn. 14

F. TWO EMPINCAl SUIVEYSovveiiiiiiiiiee e 18

Support MechaniSmMSc.coiiiiiii e 20

A. Repeatabilitycoooiiiiieee e 20

B. GO@l SEHHNG «.evvviiiiiiieeie e 20

C. TOOIS and ProCEAUIEScuuiiieiieiiiiie e e e eaeeaans 24

[@] o Tod (1153 o o PR 25

ACKNOWIEAGMENTS ... 26

REFEIENCES ...ceeiie e 26
List of Figures

Sample Change rEPOI e e 3

Hewlett-Packard Defect Classification Worksheetcccccceeeieenennnns 10

Hewlett-Packard Defect Categorization Schemecccccceevieiviivinnnnnn. 11

A flowchart of the defect prevention ProCess..........cccccccevveeeveeviineeeeeennnn, 13

Process Inferencing tree for Function Defectsccoooeevvviiiiiiciveeiinnnn. 16

Chart matching abilities to defect triggers found in inspections.............. 17

GQM model hierarchical StruCtUre...........cccuiieiiiiiiceie e, 23

Example GQM MOEIccooveiiiiiiieeee e 23

Using Defect Tracking and Analysis to Improve Software Quality

Using Defect Tracking and Analysis

to Improve Software Quality*
l. Introduction

Defect tracking is a critical component to a successful software quality effort. In fact, Robert Grady of
Hewlett-Packard stated in 1996 that “software defect data is [the] most important available management
information source for software process improvement decisions,” and that “ignoring defect data can lead
to serious consequences for an organization’s business” [Grady96]. However, classifying defects can be
a difficult task. As Ostrand and Weyuker paraphrased a 1978 report by Thibodeau, defect classification
schemes of that time period often had serious problems, including “ambiguous, overlapping, and
incomplete categories, too many categories, and confusion of error causes, fault symptoms, and actual
faults.” [OstrandWeyuker84]. Yet the classification of defects is very important, and by examining the
lessons learned by other organizations, one hopes to be in better position to implement or improve one’s
own defect classification and analysis efforts.

To this end, this report discusses five defect categorization and analysis efforts from four different
organizations. This list of organizations should be taken as a sample of the range of schemes covered in
research and in industry over the previous twenty-five years. The analysis efforts at these organizations
generally focus on one of three goals: finding the nature of defects, finding the location of defects, and
finding when the defects are inserted, with the intent of using this information to characterize or analyze
the environment or a specific development process. At the conclusion of this discussion, the results of
two surveys covering the defect classification and analysis practices of approximately 30 companies are
presented. These surveys give some insight into how industry is currently handling this complex issue.
Finally, section IIl of the report presents some suggestions of how companies could begin or expand
their defect classification efforts.

The first significant work on defect classification was done in 1973 by Albert Endres of IBM in

Boeblingen, Germany [Endres75]. Endres took data gathered on 432 defects discovered during the test
phase of development of the DOS/VS operating system. Endres classified the defects into 6 general
categories, including “machine error”, “user error,” and “documentation error.” He also classified each
defect by type. His type classification scheme was very complex, dividing each defect into groups
including “dynamic behavior and communication between processes” and “Counting and Calculating”
among many others. After classifying the defects, Endres set out to answer several questions about eact
defect, including where, when, and why the defect was inserted into the program, who inserted it, and
how to determine the best procedure for detecting this type of defect. During the course of his analysis,
Endres examined the types and number of defects found per module and the distribution of error types.
While he acknowledged that he did not have enough data to answer most of his questions, he did
manage to generate several useful conclusions, most notably that 85% of defects on this project could be
repaired by making changes to only one module. This contradicted common wisdom of the time which
felt that interfaces between modules would be a very large source of defects.

1 The writing of this report was supported by contract 1800312 between the Data and Analysis Center for Software and

m A DACS State-of-the Art-Report 1

http://www.dacs.dtic.mil/

The possibilities of this line of research led others to pick up where Endres left off. In 1976, the
University of Maryland began a collaborative effort with the Naval Research Laboratory that used defect
classification to determine whether or not the design or requirements process on a project met the goals
of that process. This work continued in the early 1980’s at the Software Engineering Laboratory at
NASA-Goddard where defect data was used to help evaluate the impact of changes in the development
process. Researchers at Sperry Univac in the early 1980’s developed a fault classification scheme for
the purpose of enabling statistical assessments of software. During the mid-1980’s, researchers at
Hewlett-Packard instituted defect classification as a portion of a large-scale company-wide measurement
program, and those efforts continued through the 1990’s. In the early 1990’s, IBM developed two new
technologies using defect data. The first, Defect Prevention, involves development teams contributing to
a knowledge base containing common defects, how they can be prevented, and how to easily detect
them. The second, Orthogonal Defect Classification, involves using statistical methods to predict the
phase in which a defect originated, rather than relying on the subjective evaluation of an engineer. In
Section Il of this report, each of these efforts are discussed in greater depth.

Before continuing, we need a consistent, standard terminology to use when discussing defects.
[[EEE83] describes such a terminologyfaiilt is injected into the system whenever a human developer
makes a mistake. The mistake itself is calledraor. One error can lead to multiple faults. For

example, suppose a developer misunderstands a concept described in a design document, and then
develops code that does not meet the design. The error is the misunderstanding, and it leads to a coding
fault. Similarly, if a developer is building a system involving the use of shared resources, the
developer’s misunderstanding of the workings of the programming language’s semaphore mechanism
(the error) leads to incorrect semaphore code in several places in the program (the fallts) A

occurs whenever the behavior of a software system differs from the behavior described in the
requirements for the system. The failure is the outwardly observed behavior that may indicate the
presence of a fault.

Note that all faults are not necessarily caused by errors. For example, consider a careless developer
who, wishing to add two variables, forgets to hit the <shift> key and accidentally types “a=b” rather than
“atb.” This fault is the result of an accident, not of an underlying error. Similarly, not all faults lead to
failures. If the code containing the fault is never exercised, a failure will not occur. Even if the fault-
containing code is exercised, unless there is some external behavior that occurs due to the fault, there
will be no failure. Finally, not all failures are caused by faults in the code. The fault could lie in the
specification or design documents as well. A designer could misinterpret the requirements and inject a
fault in the design. Code could be written that matches the faulty design perfectly, but a failure could
still result since the system will not perform as required.

2 While many of the works discussed below adhered to the IEEE standard, not all did; in these cases the authors’ teaminology w
converted to the IEEE standard. Thus, the terminology in this report may not match the terminology used in the origiflatougthout
this report, the term “defect” will mean any fault, failure or error occurring in a software system.

r_)fCE Using Defect Tracking and Analysis to Improve Software Quality 2

http://www.dacs.dtic.mil/

Typically, a software organization tracks faults and failutesng forms such as Figure 1. The contents
of the form depend on the quality goals of the organization. In the next section, we examine several
current fault collection and tracking practices and present some general guidelines.

9 mapai [e— T S
[ATATT— -
; P Trws B2 dremy
i
lllllll T — . s fe s wrre heri sheremienbe® bitea eile
P il = Ehs bigh eamenirn :
i galin Tnlrrmriie i Im vy emribes] bepsie e
R R .,..!'.p.] [Ty s .Iiur
I. Fom wrm ohey frvemmsd bedmy peed shes ghm mand e sbw wrege ems dlp e—_t Sy L plmary Winers,
.................. W 4 pervmm da g vl
g | e yohicnervcd b s L e nTirm: Fap fuihn 1 iaie il bsip 3 $ e
e ghen e i By e Bt B, NEISk parefak a) vhs avieees D e Dmssrean Cssres i vk iy
- [Bpegmans Bore opas bee Tegyeags
S-S g Arve dreerremin m
i Pl e [T - T et
T R — Far dganiss b Pemiya] pmi byl b i Evere
— = = — = oMb Bl ey b
- n wrutes |} M .
s P — v Torma i Berer b LR
s rasi friss Brow = in lrem A
7| S dererien Lren mi
1 E=rnr 0 '
[H [Emtrmarerdieg wsmare =ean aeids im inmi Pelie Bin
[t faam b wad B,

Ly ey
HL. Wlraie ghrs ime |eevest bes 1ha1 531 bSip cabvrausd s vy osdl B s

rrmmfenl dr wdeilitl md aFbe T Pl
B L L] . |

EER ol ERUE "
| § =

el Jewl e erleepieed oy sSregm

o d] $T4E A s
Fidri

Fig 1. Sample change report from the Naval Research LaboratofBasiliWWeiss81].
This form tracked all software changes, including those due to defect correction.

[l. Defect Classifications

A. University of Maryland — Naval Research Laboratory — 1976
NASA-Goddard/Software Engineering Laboratory — 1984

The goal of the researchers working at the Naval Research Laboratory (NRL) was to determine whether
or not defect classification would be a successful method of evaluating a software development
methodology. This work began in 1976 [Weiss78] and continued through the early 1980’s
[BasiliWeiss81]. The first project, [Weiss78], involved the development of a computer architecture
simulator. The development team wished to determine whether the design techniques they had chosen
would support three main goals of their design process. To that end they generated three questions to
focus their analysis efforts:

1. Are the modularization techniques effective? The development team applied the informa-
tion-hiding principle in generating their design. They broke the design system down into
modules in a manner that hoped to hide design decisions that were expected to change during
the lifecycle.

"J!CE A DACS State-of-the Art-Report 3

http://www.dacs.dtic.mil/

2. Are the detailed interface and coding specifications useful during subsequent phases of the
development lifecycle? The development team spent a great deal of effort on these specifica-
tions.

3. Are the defect detection methods successful in finding defects, and more specifically can
they find them early in the development lifecycle. Of specific concern to the development
team on this project was an area of the product referred to as the “descriptor tables.” These
tables contained the state information of the architecture being simulated, so it was critical to
eliminate defects in this area of the system. To achieve this goal, the development team
added a rich set of error-detection routines to aid them during the testing of the system.
Additionally, the development process for this project involved a code review of each module
as soon as the module could be compiled.

The researchers realized that the methods of validating the hypotheses needed to be determined a priori,
So as to insure that all necessary data would be collected. Once they had determined these methods
(discussed below), the researchers developed specifically for this project a questionnaire called an “error
report.” The developers completed the two-page error reports after each defect was discovered. In order
to validate the data, an error analyst would examine each error report shortly after it was filed. If the
analyst had any concerns or questions about the error report, the analyst would interview the developer
who filed the report. This was done as quickly as possible after the report was filed so that the incident
would be as fresh in the mind of the developer as possible during an interview.

The researchers classified each defect in four ways. First, they determined the source of the
misunderstanding that led to the defect. There were eight categories in this class: Requirements, Design
(excluding interface), Interface, Coding specifications, Language, Careless omission, Coding standards,
and Clerical. Second, each defect was classified based on the effort required to repair the defect. Easy
defects required less than a few hours to repair, Medium defects required a few hours to a few days to
repair, and Hard defects required more than a few days to repair. Third, each defect was classified basec
on how it was discovered. Finally, each defect was classified based on the number of modules analyzed
in order to determine the source of the misunderstanding that led to the defect. A total of 143 defects
were reported on this project.

The raw data described above allowed the researchers to answer the three questions of interest listed
earlier. To determine the success of the modularization efforts, they noted that only 9 of the 143 defects
(6%) resulted from interface misunderstandings. Of these 9 defects, 8 were “easy” to fix and one was
“medium.” Additionally, only 8 of the 143 defects required an engineer to understand multiple modules

to determine the source of the misunderstanding, and only 1 defect of the 143 was created when another
defect was repaired. The subjective evaluation of these results indicated that the designers successfully
achieved their goal of information hiding. Additionally, this helped answer the second question about

the usefulness of the detailed interface specifications. The researchers attributed some of the success in
limiting interface-related defects to these specifications. The researchers also used the data on how
engineers repaired defects in order to determine the usefulness of the detailed coding and interface
specifications. Studying the coding specification was the second most popular technique for

determining the required fix for a defect. The specifications were used in the repair of 46% of all

defects. (Note multiple techniques could be used on each defect). The most popular technique was code
inspection at 61%.

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 4

http://www.dacs.dtic.mil/

To answer the question regarding defect detection, the researchers noted that 43% of the defects detecte
during the lifecycle involved descriptor table access . The error-detection routines caught 56% of these
defects. The researchers subjectively evaluated the error-detection routines as successful in catching
defects. It is difficult to judge the cost-effectiveness of these routines, however the error-detection
routines detected most of the defects early in the development lifecycle, and all but one of the defects
caught by the error-detection routines were easy to fix.

Finally, the researchers noted an interesting correlation between the effort required to fix a defect and the
time in which it was discovered. 21 of the 22 medium and hard defects were discovered during the final
10% of the development lifecycle. Nine easy defects were discovered during this time as well. While

the data does not support any causality between the phase the defect is discovered and the effort require
to repair it, there is a significant correlation here.

The researchers noted that most of their conclusions were subjective. They commented that it is difficult
to replicate this type of work or compare work in one company or project to another because of
confounding factors such as differing experiences of the development team and differing environments.
Thus, statistical confirmation of hypotheses is often impossible. However, this research did show that
defect classification and analysis can be a useful tool for analyzing the success of software development
methodologies.

The work at the Naval Research Laboratory continued through the early 1980’s. In [BasiliWeiss81],
researchers proposed a new software methodology for the development of flight control software. The
research focused on the requirements phase, and change data (including defect data) were used to
evaluate the new requirements techniques. The researchers generated twenty-one questions of interest
regarding the new techniques, several of which were defect-related. Among other things, the researchers
wanted to know which sections of the requirements contained the most defects and what types of defects
were contained in the document. To answer the latter question, each defect was classified as one of 8
types: Ambiguity, Omission, Inconsistency, Incorrect Fact, Clerical, Information put in wrong section,
Implementation fact included, and Other. This classification scheme has proven to be useful, and in fact
is still in use in current research being done at the University of Maryland [Shull98].

The researchers analyzed the data at the end of the requirements phase in order to give feedback to the
developers before continuing with development. The data revealed that across the entire document, 80%
of non-clerical defects were either omissions or incorrect facts. However in certain areas of the
document, these percentages differed. Requirements regarding tables were important in this project for
similar reasons as the previous project at the NRL, so the researchers separated table-related defects
from the remainder of the defects and noted that while 49% of the defects in the document as a whole
were classified as incorrect facts, only 29% of table-related defects fell into this category; meanwhile
inconsistencies, which accounted for 13% of defects in the entire document, accounted for 21% of table-
related defects. Taken out of context, these results mean little, however they were useful to the team at
the time for evaluating the new requirements methodology.

Collaborative efforts between the University of Maryland, NASA-Goddard, and CSC, as the Software
Engineering Laboratory (SEL), began in the mid 1970’s [BasiliZelkowitz78]. One of the original

focuses of the SEL was to collect as much data as possible to help analyze software development by
discovering which parameters of development could be isolated and attempt to evaluate which of these
parameters could be altered to improve the development techniques. From the earliest days of the SEL,
defect data has been collected, and this effort continues to the present day.

DACS A DACS State-of-the Art-Report 5

http://www.dacs.dtic.mil/

During work at the SEL, researchers developed a goal-oriented methodology for data collection called
the “Goal-Question-Metric” methodology (GQM) [BasiliWeiss84]. The first step of a data collection

effort using GQM involves setting the goals of the effort. These goals enable the researchers to generate
guestions of interest that would address the goals and then determine the specific metrics that would
answer the questions of interest. The result is a focused effort where excess data does not get collected,
conserving valuable resources. Likewise, specifying the metrics in advance allows the research team to
ensure that all necessary data is collected. The GQM methodology has been used continuously since its
development, and it forms the basis for the first steps of the suggested process for implementing or
improving defect analysis efforts presented in section lll. The GQM methodology is discussed in much
greater detail in section I11.B.

The primary goal of the measurement program at the software engineering laboratory (SEL) at NASA-
Goddard is to understand process, cost and reliability for the purpose of understanding the impact that
changes will make to the process. When testing a new process at the SEL, a prediction is made in
advance of how the project using the new process will differ from the SEL baseline. The goal of the
early defect classification efforts at the SEL was to generate a baseline defect profile for projects in the
lab. When a project uses a new process, the defect profile of that project can be compared to the
baseline, and these measurements will help members of the SEL determine whether or not the process
change was effective.

By 1984, The SEL had already developed a classification scheme used by projects throughout the lab
[BasiliPerricone84]. The engineer identifying the error was responsible for classifying it in one of
Basili and Perricone’s categories:

* Requirements incorrect or misinterpreted

* Functional specification incorrect or misinterpreted

* A Design error which spans several modules

* A Design error or an implementation error in a single module

* Misunderstanding of external environment

* Error in the use of programming language or compiler

» Clerical Error

» Error due to previous miscorrection of an error
In addition to the classification of the error and information describing the error and how it was found,
the engineers tracked the effort needed to correct each error.

In the early 1980s, researchers at the SEL wanted to analyze errors within the particular arena of code
reuse. They studied a specific project containing approximately 90 KLOC of software used in satellite
planning studies. Since the SEL already had error data collection in place, it was possible to compare
the results from this project with other projects in the lab to see how much this project differed from the
norm. In general, the presence of a company or organization-wide program such as is present in the SEL
or Hewlett-Packard is advantageous for this very reason. Additionally, in the SEL, project teams are
constantly trying new processes. Before trying a process, the researchers make predictions of how the
project should improve from the baseline. These hypotheses can be validated or rejected based on actue
performance of the process. Building a baseline is key for a mature development environment because
each environment is unique, making it unwise to use data gathered by other organizations.

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 6

http://www.dacs.dtic.mil/

The researchers in the SEL also place a high priority on validating the error data that they collect. In all
projects in the SEL, the data collection efforts involve a two-step validation process. First, each
supervisor is expected to sign off on each change report form after the engineer completes the change.
The supervisor reads over the form and checks the data reported before signing off. Second, at the end
of the project cycle, the researchers examine all the change report forms to see if they can detect any
contradictions or inconsistencies. In this project, the only statistically interesting result from this second
review was that errors due to miscorrection of an error were under reported, most likely due to the
engineers’ not being aware that other engineers had previously tried to correct the error they had just
repaired.

Since the analysis of this project focused on code reuse, the researchers divided the errors found into twc
additional categories based on the module(s) in which the error was found. An error could be found in a
“new” module, involving code generated specifically for this project, or a “modified” module, involving
reused code.

When the researchers compared the types of errors found in modified modules to types of errors found
in new modules, they discovered that the only significant difference is that modified modules tended to
have a higher incidence of errors involving incorrect or misinterpreted functional specifications. The
researchers concluded that this result was probably due to the fact that while the reused modules were
taken from a different system that used similar algorithms, the functional specification was not defined
clearly enough for use in the current project.

The researchers also compared the effort required to fix errors found in new modules to the effort
required to fix errors found in modified modules. Fifty-four percent of the errors found in modified
modules required one day or longer to fix, while only 36% of the errors found in new modules required
one day or longer to fix. Additionally, a higher error density was noted in modified modules. These
conclusions allowed future development teams in the SEL to weigh the higher error repair costs for
modified modules against the savings in development time to determine the level of reuse that the
project wished to undertake.

Lastly, the researchers noticed that the error distribution by type for this project was very different from
the baseline. Twenty-two and a half percent of errors in this project were “design of a single
component” errors, where the baseline indicates that typically 72% of errors are of this type.
Additionally, this project showed an abnormally high percentage of errors due to misinterpreted or
incorrect functional specification. Forty-four percent of the errors in this project were due to this,
compared to only 3% on the typical project. This example shows how even large deviations from the
baseline do not necessarily signal problems in the process, and that data from a project cannot be
analyzed in a vacuum. It turns out that this type of system had been implemented previously, and the
developers came to the project with a very good understanding of the design, so the ratio of design to
functional specification errors was different.

B. Sperry Univac — “Attribute Categorization Scheme” — 1984

In 1984, researchers Thomas Ostrand of Sperry Univac and Elaine Weyuker of New York University
noted the difficulty of conducting statistical assessments of software development processes and
validation efforts due to a lack of usable data [OstrandWeyuker84]. To address this situation, the pair

rﬂ:ﬁ A DACS State-of-the Art-Report 7

http://www.dacs.dtic.mil/

analyzed software errors from a project at Sperry Univac, and used this error data to generate a fault
classification scheme.

To get the error data needed to generate their scheme, the researchers asked software engineers to fill o
a change report for every change made to the software being studied. The two-page form asked the
engineer several objective questions including: the reason the change was requested, how and when the
problem was detected and isolated, whether or not the engineer had originally written the code being
repaired, how much time was spent isolating and correcting the problem, and how many modules were
changed. Also asked in the form were two subjective questions: when the problem was created, and
why the engineer believed the problem occurred. These change forms were then analyzed and a list of
attributes generated which could be used to classify future defects.

The researchers named their method an “attribute categorization scheme” because of similarities they
noted between the values that were assigned to defects and the attributes of a relation in a relational
database system. Each defect is classified in four distinct areas: “Major Category,” “Type,” “Presence,”
and “Use.” There are a small number of possible values for the classification in each area.

» Major Category. Used as the primary classification for the defects. Possible values include
“Decision,” where the fault occurs in code involving branching, “System,” where the fault
occurs not in the product itself but in the operating system, hardware, or other portion of the
environment, and “Data Handling,” where the fault lies in code that initializes or modifies
data. Other values: “Data Definition,” “Decision and Processing,” “Not an Error,” (when no
change is required) and “Documentation.”

* Type. Only relevant if the Major Category indicates that the fault is somehow related to data
or a decision. If the fault involves data, the type attribute describes the data involved. Pos-
sible values include “Address,” where the fault involved a memory access issue such as a bad
array index or a pointer error, “Control,” where the data involved is used for flow control,
and “Data,” where information was processed, read, or written incorrectly. If the fault
involves a decision, there are two possible types: “Loop” and “Branch,” indicating what type
of decision was involved.

» Presence. A fault can either be “Omitted,” where a lack of code was the cause of the fault,
“Superfluous,” where extraneous code included in the product led to the fault, or “Incorrect,”
where the code that was in the product needed to be altered in order to repair the fault.

» Use. Relevant only if the fault involves data handling. Possible values are “Initialize,” “Set,”
and “Update,” depending on the dependency between the data being handled and the value to
which it is assigned.

The researchers acknowledge that since a relatively small number of errors were used to generate the
scheme, the possible values for each area do not necessarily include all possible values for all possible
faults. However, as new fault types are discovered, minor changes should be all that is needed for the
scheme to be able handle the new faults. The classification scheme is oriented towards code faults,
since the majority of the errors they tracked in order to generate the scheme resulted in code faults. The
goal of the scheme is to answer the questions “What is the fault?” and “How did the fault occur?”

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 8

http://www.dacs.dtic.mil/

After developing the scheme, the researchers classified faults that were reported for this product starting
shortly after unit testing had begun. When an engineer discovered some problem with the product, the
engineer filed a problem report. The problem report included a description of the symptoms of the
problem, a description of the problem in the code, and the modifications done to the code in order to fix
the problem. The researchers took the problem reports and classified the defects themselves. They then
looked at the data to see what they could learn about the product and the processes in their environment.

The researchers used the data to make many interesting observations. For example, the most common
type of defect was “data definition” (32%), while “documentation” defects (1%) were relatively rare.

The majority of “data handling” faults were discovered in unit test, whereas over 80% of “data

definition” faults were discovered in functional testing. Fifty-four percent of faults were faults of
omission. Fifty-four percent of faults found in unit test were isolated in one hour or less, but that figure
jumped to 86% of faults isolated in one hour or less when they were found during functional test.

By themselves, these data are not of much interest to other organizations. The data are likely
environment-specific, and quite possibly even product-specific within their environment, although
Ostrand and Weyuker did find that their data corresponded roughly with some other empirical studies of
the day. The specific results are not what is important. The significant conclusion is that this (or a
similar) type of fault classification scheme allows an organization to develop a baseline from which one
could objectively determine the effects of a process change by comparing the results of a product
developed with the new process to the baseline. Additionally, the data could guide the organization by
identifying problem areas where processes are in need of improvement.

In summary, the researchers at Sperry Univac wanted to develop a fault classification scheme that would
allow them to perform meaningful analyses of a product or a development process. While this scheme
was developed in a narrowly-focused environment, the researchers succeeded in demonstrating the
feasibility of using fault classification for these purposes. That is, the specific results from their
environment are probably not directly transferable to other environments, but other organizations could
use a similar method to judge the effectiveness of process improvements in their environment.

C. Hewlett-Packard — “Company-Wide Software Metrics” — 1987

In 1986, Robert Grady and Deborah Caswell of Hewlett-Packard released a book which discussed
efforts at Hewlett-Packard to develop a company-wide software metrics program [GradyCaswell87]. By
metrics, Grady means any direct measurement made of the software, or any value that can be calculated
from direct measurements (defects per KLOC, for example). While HP’s efforts are not limited to

defect classification, defect classification does play a significant role in their overall program.

Throughout Grady’s work, the term defect is used exclusively, rather than fault or error. It can be

inferred that at Hewlett-Packard, “defect” is a term used to capture faults, failures, and errors.

The engineers at Hewlett-Packard file a defect classification form in the defect tracking system for each
defect discovered. The form, shown in Figure 2, asks for information on the severity of the defect, the
method of discovering the defect, and the symptoms of the defect. A second form, not shown, is filed in
the defect tracking system to track the resolution of the defect. This form includes information on the
priority of the defect (i.e. how soon it needs to be fixed), how the defect was fixed, and who fixed it.

The form also asks the repairing engineer three more questions: when the defect was fixed, when the
defect was found, and when the defect was introduced. While the first two of these questions are
objective, the latter is subjective.

rﬂ:ﬁ A DACS State-of-the Art-Report 9

http://www.dacs.dtic.mil/

Defect Tracking System Classification Worksheet

Delest numbser: i - Diate delzet Mund:
Submitier; — Pliene numier:
Impacted project /Tib: — Computer name:
Defeetive softwars: Wersion Mumber: il

Flese indiczie how serions Uhe geablei is, Use the follewing severity cmies:

0= User misanderstanding
1 = Casmetic delect: cen still pet fai done
-
___ '_-E = Tmplementing workaronne is simple
_; : Werkironnd is difficult
= Al 'r' : [ncorrect resulls are graduced
B -

&= Major lealure is nol working, systenn crashes, los of data
Ixezs picdlem Reep project from meeting o critical checkpaim™ ¥ M

Any attached documents w help elarify prowlem? Y N
Teseription of defsat _

| Foued any workaround for problem? VM
|1 answer s yes, deseribe workaround:

How was prablea: found?

repular nse

gestalt [Mush of inspiratian to try smnething)
FOUT: Tevitw

arled from an extermal soures

What were the svimpioms of the probl
_ symem crish el st eribrLeErnent regquesl

_ dreadlock hang _ unfriendly behavior_ interl L seftware
__inconsistent behaviar _imcarrect bebavior — messaee wielcar or wrong
— infinile loop — ursxpected shorl — documenation missing

_ anterface Lo aperating system — fle last — documentition wrong

— ather:

Date fix reguized by

Fig 2. Hewlett-Packard Defect Classification WorkshediGrady87]

Before starting to track any software metric, including data about defects, Grady emphasizes that the
company or project team involved must have a clearly defined goal. Why the team wants to track defect
data directly affects the specific data that are tracked. With the goal in mind, the team or company can
determine the exact data to be collected. For example, in order to achieve the goal of determining the
cause of defects in order to improve their development processes, HP engineers felt that they needed to
determine when a defect was found and when it was fixed as stated above. Similarly, if the goal were to
determine the effects of reuse on defect repair efforts (as will be discussed later in this report), effort
required to fix each defect would also need to be measured. An additional benefit of setting a well-

defined goal is that the focused effort can keep costs down as engineers spend no time gathering
needless information.

As previously stated, the goal of the defect tracking portion of the Hewlett-Packard metrics program is
to determine the cause of defects in order to improve development processes. By 1992, the defect
tracking had evolved, and in [Grady92] the classification scheme shown in Figure 3 was in use.

r_)ff__E Using Defect Tracking and Analysis to Improve Software Quality 10

http://www.dacs.dtic.mil/

ORIGIN: WHERE?

Spec_ification Design Code Environment] pPocumentatign Other
requirements support
QL : ;
— Requirementg | HW Interface | | (Inter-) Process$ Logic Test HW
<E Communication$ _
T or SW Interface Computation Test SW
Specifications Data Definition . .
; User Interface Data Handling| | Integration SWM
Functionality . Module Design
.- Functional Module Developmenta
LL Description Logical Interface/ Tools
& Description Implementation
— Error checking Standards
Standards

MODE:

WHY? Missing Unclear Wrong Changed Better Way

Fig 3. Hewlett-Packard Defect Categorization Schen|®fleeger98]

As seen in the diagram, Hewlett-Packard categorizes defects first based on the phase in which the defect
was introduced. Depending on the phase, there are different types of defect, as shown in the middle
layer of the diagram. All defects regardless of origin are further classified based on the mode of the
defect. For instance, a code defect where error checking had been omitted would be classified under
“Missing.” A Design defect where the Functional Description was incorrect would be classified under
“Wrong.”

To achieve their aforementioned goals, the development teams examine the types of defects that occul
most frequently, and the number of defects which occur in each module. The latter measure helps manager
identify modules which may require extra testing or even a major rewrite. Additionally, the teams examine
the phases in which defects are introduced. The data are plotted on graphs. If the only data available are
the data from a single project, the development teams may simply look at the graphs to try to identify
trends. If data from several projects in the environment are available, then the data from the current project
can be compared to the baseline and a more formal statistical analysis can be run.

Another way to use these data for process improvement is to identify common causes of errors. One
group of developers at Hewlett-Packard felt that they did not understand how defects influenced their
process [GradyCaswell87]. Their measurements indicated that some projects in the group had pre-
release defect densities as low as 0.4 defects per thousand lines of non-commented source code, while

rﬂ:ﬁ A DACS State-of-the Art-Report 11

http://www.dacs.dtic.mil/

others had densities as high as 6 defects per thousand lines of non-commented source. The group
wanted to try to predict defect densities better and to look for ways to improve its processes to reduce
the defect densities. The group began classifying defects in a similar scheme to the one showed above,
but tailored slightly to fit their focus, which was developing compilers. What the group discovered was
that most of the defects were injected during the detailed design phase. Not just that, but over half of the
total reported defects were injected during redesigns. The group noted that the formal reviews in place
for designs were not being used following redesigns. Consequently, redesign reviews were added to try
to catch these redesign defects before they became faulty code.

D. IBM — “Defect Prevention” — 1990

The goal of the Defect Prevention efforts at IBM, as developed by R.G.&flayss just what one

would expect from the name. The program focuses on eliminating the introduction of defects [Mays90].
To do this, faults are analyzed in order to understand them better, which the goal of not allowing similar
faults to enter the product in the future.

The cornerstone of the process is causal analysis. Rather than rely on a single developer’s opinion of the
cause of the fault, each developer is expected to track objective data about each fault. The fault data are
entered into a database, and at the end of each phase, a meeting is conducted to analyze the faults
collectively to try to determine their causes. The “causal analysis meeting” is a two hour meeting
occurring at the end of every development phase. Management is not invited to these meetings in the
hope that developers will be inclined to speak more freely about root causes. The development team as
a whole discusses all of the faults tracked in the database. Causal analysis involves abstracting the fault
to its associated error to get a better understanding of the fault. When the errors have been abstracted,
they are classified into one of four categories.

» Oversight. The developer did not completely consider some detail of the problem. For
example, a case might have been missed or a boundary condition not handled properly.

» Education. The developer did not understand the process or a portion of the assigned task,
presumably because of a lack of training in that area.

« Communications failure. Information was not received, or information was
miscommunicated and thus not understood properly.

» Transcription error. Atypographical error or other mistake was made by the developer. The
developer fully understood the process to be applied, but made a mistake.

The researchers feel that, in order to improve processes, more information is needed than what can be
provided by simply looking at statistics on defect or error classifications for a project. So while the error
classification scheme is valuable, it is just a step in the analysis process. The participants in the causal
analysis meetings discuss the errors among themselves and try to determine the cause of the error and
when it was introduced, with a focus on how to prevent similar errors from occurring again. Part of the
process involves searching for similar errors that may still exist in the artifact but have not yet been
detected. The goal of this last effort is what the researchers have named “defect extinction” — removing
all existing instances of the error and adjusting the development process so that no more instances of this
error will ever occur.

The last thirty minutes of the causal analysis meeting are spent examining the error information
previously discussed. The purpose of this phase of the meeting is to try to identify trends in the errors
that have been introduced into the product and examine the development process of the previous phase.

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 12

http://www.dacs.dtic.mil/

Portions of the development phase that had a positive impact are noted so that suggestions can be passe
to other teams. Negative portions of the phase are identified, along with possible suggestions for
improvements. At the end of the meeting, all of the suggestions from this last phase are logged in the
action database, along with the causes for all of the errors discovered during the phase.

The next step in the defect prevention effort involves the “action team.” The size of the action team is a
function of the size of the software development staff; typically there is one member on the action team for
every 10-20 developers on staff. The members of the action team are full-time members of the development
staff who devote part of their time to being on the action team. The action team holds regular meetings to
evaluate all of the suggestions that come from the causal analysis meetings. The action team decide:
which suggestions to implement, how to implement them, and who will handle implementing them. Some
suggestions involve developing or enhancing a tool. Others involve changing a process or getting training
for personnel. The action team publishes results from all of their actions in a publicly-accessible repository,
in addition to highlighting key results in the organizational newsletter.

Feedback is a very important part of the defect prevention process. First, developers need to know that
management takes their comments seriously and that they can influence changes in the development
environment. Second, the developers need feedback to keep them up to date on current process change
and on what errors other developers discover, so that they do not make the same mistakes themselves.
To serve this end, at the start of each development phase, the technical lead holds a “stage kickoff
meeting” for the team. At this meeting, the lead discusses the process for the stage so that each
developer knows how to perform the tasks required in the phase. The inputs to and outputs from the
stage are also discussed, as is the “common error list.” This list is a compilation of errors which occur
frequently during this stage of development. Finally the scheduling details for the phase are laid out.

Develapment Sage faren

Tasks and YWolidstion |
&
n
n
n
Fm————— 1 Causal Annlysas Mecimg
]
] i
Stage Backofl Meeting ; i
& Product Changea
| T
bt ol T . o =
Fackage fo xmands, Fsengriiion Acton
et Dialnbase
‘ b T e
: Action Tenm e

minon Emer Leds

Checkletk, Lhedelines, | empebies
I 3 <1 Ire

Teohradad Wit Ly

Fig 4. A flowchart of the defect prevention procesgviays90]

rJﬁCE A DACS State-of-the Art-Report 13

http://www.dacs.dtic.mil/

The researchers report promising results for defect prevention. They analyzed the faults per thousand
lines of new and changed source code over the course of eight releases of the same product. The defect
prevention process was introduced during the seventh release. The data reported in the seventh and
eighth releases showed a reduction of faults per KLOC of approximately 50% when compared to the

first six releases. The researchers estimate the costs of the defect prevention effort, including meetings
attended and implementation of action items, at between 0.4% and 0.5% of total development resources.

While the above discussion focuses on defects in software artifacts, other efforts could benefit from
defect prevention as well. For example, problem reports from customers could be fed into a database
and the test team could analyze these reports to find flaws in the test processes and eliminate them,
although an error-classification scheme tailored for these types of errors would be necessary.

E. IBM —“Orthogonal Defect Classification” — 1992

A second scheme developed by IBM, called Orthogonal Defect Classification, was developed with the
goal of classifying defects so as to be able to give useful feedback to developers and managers on the
progress of the current project [Chillarege92]. The researchers also wanted to develop a classification
that was simple and relatively free from human error. IBM was looking for a way to predict software
quality from the defect data without relying on existing statistical models. They wanted to obtain cause-
effect data, where they could try to find the root cause of a defect, without relying on the qualitative
opinions of the developers or testers on the team as previous classification schemes had done.

IBM chose to tackle this problem by tracking two additional attributes of a defect: the defect type and
the defect trigger. The defect type attribute attempts to categorize a defect by the semantics of the repair
needed to remove the defect from the system. If the fix to a defect involves changing the initialization
of a variable, or a change to just a few lines of code, it @sasignmentlefect. If the fix is related to
interactions between modules or device drivers, it int@nfacefix. If the developer notices that an

entire algorithm needs to be changed because it is incorrect or inefficient, the defect is classified as an
algorithmdefect. For each of these types, the developer also indicates whether the defect is one where
information in the artifact is missing, or information is incorrect. All in all, there are eight possible
classifications that span all the possible defect types. Eight may sound like a small number, but one of
IBM’s goals was to keep the number down. With fewer choices for any defect comes a greater
likelihood that the developer will be able to choose accurately among the types. Additionally, the defect
classes need to be distinct, or orthogonal, so that developers will not find themselves in the situation of
trying to choose between types, possibly misclassifying a defect. Finally, the defect types must span all
possible defects, so the developer will not be faced with a defect that does not fit easily into one of the
categories. IBM originally ran a pilot study using five classes, after which the categories were increased
to the current eight.

While engineers simply track the repair via the defect type attribute, the goal is to use this data to
determine where the fault was injected into the system. Prior to this research at IBM, there were
schemes in existence that asked the developer for an opinion on this very question, and asked the
developer to classify defects based on when the defects were injected. See section C above on Hewlett-
Packard for an example. The downside of those methods is that they require developers to conjecture
about what occurred at some point in the past, rather than answering a question which has a definitive,
easily measurable answer. The researchers found that each defect type tends to be injected in relatively

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 14

http://www.dacs.dtic.mil/

few areas. For example, assignment defects tend to be injected in the coding phase, where algorithm
defects tend to be injected in the low-level design phase.

At the end of each development phase, IBM charts the number of defects of each type found in a given
phase. The change in the distribution of types from phase to phase gives the development team
feedback on the development process up to this point. For example, algorithm defects tend to be
injected in low-level design. If the phases of development were design, code, unit test, integration test,
system test, for example, one would expect a higher number of algorithm defects found in the code and
unit test phase, and a steadily decreasing number over the integration and system test phase as the
defects are found and fixed. If the curve is not as expected, then perhaps the development effort is not
logically ready for the current physical phase.

Using the defect type classification involves making logical inferences such as the one above to try to
analyze the current development process. Then data are gathered from several projects for calibrating
the technique and tailoring it to a specific environment. The resulting baseline would allow for a
numerical or statistical analysis of the defect type distribution, so the managers can do more than simply
look for trends.

One example of using baseline data to build a model of an environment is what IBM calls “Process
Inferencing.” The researchers noticed that since each defect type tends to be injected at a specific phase
the following phase should show a peak in the discovery of that type of defect. Similarly, valleys should
precede and follow the peak of the discovery of the defect. A deviation from this expected trend

probably indicates some deficiency in the process. In an effort to quantify this deficiency, IBM analyzed
data from projects and generated a binary tree for each defect type. The tree allows the development
manager to infer information about the development processes up to the current phase, hence the term
“Process Inferencing.”

Each level in the “Process Inferencing” tree corresponds to a development phase. For example, the root
of the tree may be “High Level Design Inspection.” The second level of the tree would then be
“Functional Verification Test,” because this is the next development phase. The next level of the tree
would correspond to the next phase, and so on, with the bottom level of the tree being the phase after
which the development manager would like to make inferences about the development process up to that
point. Itis conceivable then that there would be many different models for an environment, each with
different bottom levels, so that the manager may obtain feedback at multiple phases. Each branch of the
tree corresponds to a number of defects of the given defect type found in that phase, either “high” or
“low.” An example of this tree in [Chillarege92] for the function defect type is shown in Figure 5.

Each leaf node in the binary tree corresponds to some inference about the development process for the
current project. For example, if a high number of function defects were discovered in the High Level
Design Inspection, a low number of function defects were discovered in the Function Verification Test
(FVT) and a high number of defects found at the system test phase, it means that the design is still
exposed and that the Function Verification Test team did not do a very good job, leaving the System Test
team to discover the function defects.

rﬂ:ﬁ A DACS State-of-the Art-Report 15

http://www.dacs.dtic.mil/

HI.T3]ﬂ-'frﬂﬂ.‘-'liun
En > = " Larw
e e
l F¥T | FVT
e a S
5% i
Fi %, ™.
ligh % Lovw High | ‘xh I
e M, .,
% "
ra A f "
* "
5T | 8T | 5T | 8T
AN "- i -..
High o % Low ”'.'.-'"-. Rx " figh va fligh & b s
= . i K, -
E L Licagn Kaposcd Lgn Faced I' " p'r "\.\,-
.-"' ". Hevarmp Fy | Irapsacioe: Limod) ll". L [imyraa] esian Choasl
F " .-'. A ovmmp Ingpoclion
- I i amp FV
Irproction Chiscal L4 E
F%T (leond D, Bosgpavsan] Csign Fixad
r i he L

Fig 5. Process Inferencing tree for Function DefectfEhillarege92]

All of the above information can be gathered by tracking a single attribute, the defect type. The other
attribute that IBM tracks is the “defect trigger,” the condition that leads to the failure which exposes the
defect. Again, there are a small number of triggers which are orthogonal and span the set of possible
triggers. For example, a failure may be triggered by a boundary condition, a timing issue, or an
exception handler. While the defect type gives feedback on the development process, the defect trigger
correspondingly gives feedback on the testing and verification processes. If the defect trigger

distribution after product release differs greatly from the defect trigger distribution during the system

test phase, perhaps the test process is not focusing on the correct types of tests. An example given in the
paper involves main storage corruption defects in a database system. The test group believed that timing
issues were the most common cause of main storage corruption, and thus focused their testing efforts on
timing. When the product was released, only 12.4% of failures were triggered by timing issues. The
largest number of failures were triggered by boundary conditions. The test team used this information to
refocus their efforts.

Defect triggers also apply to other artifact inspections, not just finished code. The researchers claims
that certain defects tend to be found by inspectors with certain backgrounds. For example any inspector
in a code inspection should be able to find defects triggered by lack of design conformance. Only a very
experienced inspector would be expected to find defects triggered by rare situations, and inspectors very
familiar with the development history of the current product would be expected to find defects related to
backwards compatibility issues. After building a chart listing the possible defect triggers and the

profiles of the inspectors expected to find defects with those triggers (shown in Figure 6), the
development manager can use this chart to assign inspectors to the inspection task, minimizing the
resources needed to cover all bases.

r_)ff__E Using Defect Tracking and Analysis to Improve Software Quality 16

http://www.dacs.dtic.mil/

Triggers

New/Trained
Within Product
Cross-Product
Very Experienced

Design Conformance X X X
e Requirements Document

X

e Design Specification Document
e Design Structures Document

Understanding Details X X X
e Operational Semantics

e Side Effects
e Concurrency

v

Backward Compatibility X
Lateral Compatibility X

Rare Situations X

Reviewer’s/Inspector’s Experience

Document Consistency/Completeness K X X

Language Dependencies X X X

Fig 6. Chart matching abilities to defect triggers found in inspectionfChillarege92]

Additionally, for documents that are inspected multiple times, one can examine the trigger distribution

of defects reported after each review. Just as the defect type distribution is expected to change from
phase to phase, the defect trigger distribution should change from review to review. Once a baseline of
expected trigger distribution trends is built, deviations from this expected trend can be measured, and
feedback can be provided to the team working on the inspection process. For example, if defects with a
certain trigger are not being found, perhaps the skill set of the inspection team needs to be re-examined,
based on the chart described above.

In conclusion, IBM’s Orthogonal Defect Classification scheme attempts to use easily obtainable data to
make inferences about the development process. Rather than rely on qualitative input from the
development team, the team members are expected to answer two relatively simple questions about eacl
defect: the defect type and the defect trigger. Since there are relatively few possible answers to the
guestions asked and the answers are orthogonal and thus do not overlap, the effort to answer the
guestions should be minimal. Even without a baseline, a project manager can use logic to evaluate the
distributions of defect type and defect trigger from phase to phase. To make deeper observations, data
from several projects must be gathered to generate an organization-specific baseline to which future
projects can be compared.

rJﬁCE A DACS State-of-the Art-Report 17

http://www.dacs.dtic.mil/

F. Two Empirical Surveys — 1995, 1998

In order to try to better characterize the defect classification efforts in industry today, researchers at the
University of Maryland conducted two small-scale surveys on the topic. The first survey was conducted
by Jyrki Kontio in 1995, where respondents were asked what defect data their organization tracked
(faults, failures, errors, etc.), which types of defects they tracked, who in the organization uses the defect
data, how the organization uses the data and how the data are analyzed. The questions were all multiple
choice. Twenty-one companies responded to this survey.

The second survey, from the Summer of 1998, asked similar questions. However, no choices were given
to the respondents. Instead, the respondents were asked to write a short paragraph describing their
efforts. This free-response format elicited responses that gave more qualitative information about the
processes. Questions specifically asked included: which problems the organizations are addressing with
their defect tracking and analysis efforts, what types of analyses they perform, and how widely in the
organization the results are shared, in addition to what data the organizations track. Nine companies
responded to this survey.

The small sample sizes of the two surveys preclude statistical significance and gross generalization.
However, their findings provide some useful insight into current practices. In the 1995 survey, almost
75% of the companies surveyed used defect data for process improvement, while nearly all respondents
used the data to assess project status. By contrast, the 1998 survey showed minimal use of data for
anything other than problem tracking or crude identification of “problem” areas of the current project
which were turning up a proportionally greater number of defects than other areas. Which picture of
defect data usage is accurate? The patrticipants in the 1995 survey were also participants in the 1995
International Workshop on Software Engineering Data, which focused on using defect and cost data in
process and risk management. On the other hand, the 1998 survey respondents were chosen to be
representative of a variety of industries, regardless of sophistication or maturity. Thus, the 1995 survey
respondents were more likely than those in the 1998 survey to be using the defect data in sophisticated.
In fact, 9 of the 21 participants in the 1995 survey were either CMM level 2 or level 3. Of the compan-
ies participating in the 1998 survey, only one had a formal external assessment of the quality or maturity
of its software development practices, although a second was in the process of such an assessment.

It is relatively safe to conclude that companies that track defect data fall into three camps. The first
group, whom we call “firefighters,” collects defect information strictly for day-to-day management.

Their defect tracking systems give the managers a way to assign defects to certain developers to be
fixed. Atthe same time, the systems advise the tester when the defect has been fixed so the tester can
verify the fix. They provide a mechanism for developers to query a system to find what defects are
assigned to them; project managers can also use the systems to check the load on each developer. Som
simple analysis can be done, such as tracking how many new defect reports were filed in a given time
period. As one responder to the 1998 survey stated, when the number of new defects found starts to
level off, either the development phase is coming to an end or the test suite is losing its effectiveness.

Most companies in this first camp need to collect a good deal of data about each defect in order to
achieve the above stated goals. The most important detail is a textual summary of the defect, including
the steps required to reproduce the defect. The date that a defect was found, the tester reporting the
defect, the date the defect was repaired, and the developer responsible for the repair are all usually
tracked. Most companies also track test environment, including what hardware and operating system the

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 18

http://www.dacs.dtic.mil/

test machine was running when the defect occurred. Error messages produced by the software or
operating system are often logged, and in some companies, an identifier of which test case produced the
defect is tracked. In some cases, defects are logged with a priority and/or a severity, which indicates
either the tester’s (or manager’s) input on how to prioritize the repair of defects. Development groups
frequently try to narrow down the location of the defect, either by tracking a functional area of the
program, a module or a source file, depending on the group. All of these data can be used to classify
defects. For example, all defects found during a certain phase would be one defect class. However,
defect analysis is time-consuming and often suffers on resource-constrained projects.

The second group of companies takes the above one step further. These companies use the data in wha
Robert Grady terms a “reactive” fashion [Grady96]. The projects in these companies use the defect data
locally within their project. Defect data are often not shared among projects. The primary use of the
defect data in reactive organizations is to improve local situations [Grady96]. While the data gathered
may identify “hot spots” in the current artifact or process, the emphasis is placed on fixing the problems
at hand, rather than trying to prevent similar problems in the future. A typical “reactive” process would

be similar to the process described in [OstrandWeyuker84] above, for example:

1. Researchers examine error data from a completed project or projects to develop a fault
classification scheme.

2. At the end of the next project, researchers examine all problem (fault) reports and classify the
faults using the scheme developed in step 1.

3. Researchers analyze data to try to determine if a process is in need of change.

4. After a project is developed with a process change, compare the fault data for this project to
the data gathered in step 3 to measure improvement.

An advantage to having a company-wide metrics program such as the one at Hewlett-Packard is that
teams have the ability to compare all of the above measures for the current project to the norm for the
company at large. This helps teams identify where their project is deviating from the norm, which may

be a signal that an area of the process or product needs more attention. In this situation, the above 4-ste
process could be amended to classify multiple projects in step 2 and then compare the data to a baseline
in step 3. In practice, a “reactive” organization may begin with the original 4-step process listed above,
and then as more data are gathered, shift gradually to the more evolved situation where comparisons to &
baseline are used.

The third group of companies act in what Grady terms a “proactive” fashion, trying to analyze the
defects encountered for the purpose of preventing those types of defects from occurring in the future
[Grady96]. The key to becoming a proactive organization is some sort of focus on the root cause of the
defect. Grady describes “root cause analysis” and describes a meeting format in [Grady96] which is
very similar to the Defect Prevention work at IBM. In a proactive organization, Grady states, defect data
must be shared among projects so that company-wide trends can be identified. The knowledge gained
from the analysis of errors, faults, and failures must be used to improve processes and identify what
types of training are necessary for employees. Finally, there must be some form of continuous feedback
loop so that the organization can continually improve their development processes.

rﬂ:ﬁ A DACS State-of-the Art-Report 19

http://www.dacs.dtic.mil/

lll. Support Mechanisms

The preceding section of this report examined the defect analysis and classification efforts as published
in research journals. Two questions remain to be addressed to those who are looking to begin defect
analysis efforts. The first addresses the repeatability (and thus the feasibility) of code defect
classifications. If two engineers classify the same defect differently, then the defect classification data
will be of questionable validity and conclusions reached from the data may not be significant or
effective. The second question involves implementation. How should an organization with little or no
formal defect analysis or classification efforts go about implementing these efforts?

A. Repeatability

The first question on repeatability has been addressed in an empirical study conducted by Khaled El
Emam and Isabella Wieczorek of the Fraunhofer Institute for Experimental Software Engineering in
Kaiserslautern, Germany [EIEmam98]. The researchers examined data from several inspections during
a project conducted within a German company. All inspections involved two reviewers. The reviewers
classified each defect using a scheme very similar to the original Orthogonal Defect Classification
scheme presented in the previous section. While only approximately 25% of defects found in a given
inspection were discovered by both reviewers, in the situation where both reviewers discovered the
same defect, they classified it the same way a statistically significant portion of the time. This study
examines only a single scheme in a single environment, but it gives an independent confirmation of the
results experienced by the practitioners of the methods discussed in section II.

B. Goal Setting

The first step in implementing a defect analysis program must be the establishment of well-defined

goals. Goals are necessary so that analysis efforts can be focused and coordinated. One example of a
goal could be attempting to characterize or understand some attribute of the development environment.
Another could be analyzing the impact of a specific process change in the environment. When defining
goals, it would be wise to consider the maturity of the organization as a whole on a scale such as the
CMM. Additionally, one should consider the organization’s “defect” maturity (“firefighter,” “reactive,”

or “proactive”) as described above. The state of the organization on scales such as these can help the
organization to generate goals that are reasonably achievable. On the other hand, if the organization has
a goal of improving CMM maturity, the goals could be set high enough to allow progress in this area.

[BasiliWeiss84] and [BasiliRombach87] discuss a specific process for setting goals. These researchers
identify setting goals as the first step of the Goal-Question-Metric paradigm (GQM). To them, a goal
has four components: a Purpose, an Issue, an Object (or Process) and a Viewpoint. The Purpose is a
verb, such as “To Characterize” or “To Improve.” The Issue is the object of the verb used as the
purpose, such as “Defect Type Distribution” or “Defect Repair Effort.” The Object or Process describes
the artifact being examined, such as “Modified Code Modules” or “Software Design Process.” Lastly,
the Viewpoint encompasses the user of the data as well as the scope of the analysis. For example, the
Viewpoint could be the development manager, where the goal would involve giving feedback on
attributes of a specific project. Alternatively, the viewpoint could represent a researcher in the
organization trying to compare processes from multiple divisions. Similarly, the viewpoint of a high-
level manager might reflect a desire to evaluate performance of all the projects in a department. The

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 20

http://www.dacs.dtic.mil/

four attributes of a goal can be combined into a single sentence that concisely captures the goal. For
example, a goal could be “To reduce defect repair effort in modified code modules from the point of
view of the development manager.” The possibilities for combinations of these attributes are limited
only by one’s imagination.

Robert Grady in [Grady87] also lists establishing goals as the first step to any successful software
measurement program. He points out that a program’s objectives help determine how the program will
be implemented, and in [Grady96] he adds that the goals allow the organization to prioritize efforts.
This prioritization allows the organization to focus resources in a manner that will maximize the
likelihood of the program’s success. Be forewarned that if goals are not well-specified, “one runs the
risk of collecting unrelated, meaningless data,” or worse “data in which either incomplete patterns or no
patterns are discernible” [BasiliWWeiss84].

Goals are also important from a business perspective. In order for a defect analysis program to be
successful, management and development teams must agree on the goals. To gain management suppor
one may try to show the cost advantages if the goals are achieved. The defect prevention research team
from section I1.E above attempted to calculate return on investment by estimating the number of faults
and errors prevented and the effort saved by not having to find and fix them. Often a specific numerical
return on investment will be difficult if not impossible to determine at the start of a new program, but
management will likely want to feel that some tangible benefit will be gained before agreeing to commit
the necessary resources. If management does not agree to protect the defect analysis efforts from the
seemingly inevitable cuts in resources as schedules get tight, then it will be very difficult for the

program to succeed. To help avoid this situation, [Grady87] suggests that the responsibilities of each
member of the organization be carefully enumerated before proceeding. In this way, the effort required
can be estimated and factored into schedules. Finally, if the goals involve changing of development
processes, which they often do in mature organizations, it is imperative that management and
development agree on the method for implementing process changes.

Once the goals have been established, and management has agreed to support the efforts to reach them
the next step is to divide the goal into its major subcomponents [BasiliRombach87]. This decomposition
can be accomplished by generating a list of “Questions of Interest,” the second level of the GQM
hierarchy [BasiliWeiss84]. The questions describe how the goal is going to be achieved. Consider again
the sample goal described earlier, “To reduce defect repair effort in modified code modules from the
point of view of the development manager.” One question that would need to be answered is “What is
the current effort spent repairing defects in modified modules?” It is possible for one question to

address multiple goals. For example, the above question could also address the goal “To characterize
the costs and benefits of the code reuse process from the point of view of the high-level manager.”

Questions of interest connect the goals to the data needed to satisfy the goals. At the same time, they
allow an organization to refine the goals to a finer level of detail. If questions cannot be generated for a
specific goal, then perhaps the goal needs to be defined more clearly. As stated in [BasiliWeiss84],
“goals are not well defined if questions of interest are not or cannot be formulated.” Omitting this step
can be costly. If the questions of interest are missing, then there is too little guidance for what data must
be collected. This may lead to inaccurate or incomplete data which may prevent the goals from being
adequately satisfied [BasiliWeiss84].

rﬂ:ﬁ A DACS State-of-the Art-Report 21

http://www.dacs.dtic.mil/

After the goals have been broken down into their component questions, the next step is to determine
what data will be collected. These data, also called metrics, form the third level in the GQM hierarchy.
The metrics can be objective or subjective. The difference between the two is that subjective metrics
depend on the point of view of the person generating the metrics, but objective metrics do not
[BasiliCaldieraRombach94]. The data gathered must address the questions of interest generated in the
previous step. Just as one question may help address more than one goal, one metric may partially
answer more than one question. One of the advantages of establishing goals before choosing metrics
can be seen here: since each metric must be traceable to at least one goal through at least one question,
there is no collection of needless data. Figure 7 shows graphically the relationships between Goals,
Questions of Interest, and Metrics in the GQM hierarchy, figure 8 lists a detailed example of a Goal and
all the Questions of Interest and Metrics needed to meet that goal.

The survey of literature presented in section Il gives some insight as to what metrics should be collected.
The location of the defect both generally (e.g. requirements, design, code) and specifically (a particular
module) can be useful for determining where processes can use improvement. The method used to
detect the defect can help evaluate the success of various defect-detection methods. The effort required
to repair a defect gives an objective measure of the severity of the defect, although this one measure
alone does not give a complete picture of severity. The above metrics are all objective and simple to
collect.

There are subjective metrics which would be useful to collect as well. Several of the classification
efforts described in section Il involved classifying defects by type. The type scheme described in the
Orthogonal Defect Classification work in section I1.E attempts to minimize the possibility of
misclassifying defects. The classification scheme for requirements faults presented in [BasiliWWeiss81]
in section II.A (Omission, Incorrect Fact, Ambiguity, etc.) is still being used by researchers at the
University of Maryland today. While these schemes may not fit perfectly into other environments, they
make excellent starting points for practitioners interested in developing their own schemes.

Once the metrics have been enumerated, the next steps include to preparing the personnel for collecting
the data and then actually collecting the data. Before data collection, the development staff needs
training in the collection processes. If the staff does not fully understand the process, the data collected
may not be accurate, and the defect analysis effort will likely fail. It is wise to share the goals of the
defect analysis effort with the staff, so that they know why they are collecting this data. If they
understand they goals, the staff may be more motivated and desire to accomplish the task successfully.

r_)fCE Using Defect Tracking and Analysis to Improve Software Quality 22

http://www.dacs.dtic.mil/

Goal 1 Goal 2
Question Question Question Question Question
Metric Metric Metric Metric Metric Metric

Fig 7. GQM model hierarchical structure[BasiliCaldieraRombach94]

v of

Goal Purpose Improve
Issue the timeliness of
Object (process) change request processing
Viewpoint from the project manager’s viewpoint
Question Q1 What is the current request processing speed?
Metrics M1 Average Cycle Time
M2 Standard deviation
M3 % cases outside of the upper limit
Question Q2 Is the (documented) change process actually performed?
Metrics M4 Subjective rating by project manager
M5 % of exceptions identified during reviews
Question Q3 What is the deviation of the actual change request
processing time from the estimated time?
Metrics M6 Current average CyclEme — Estimatedverage Cycldime *10(
Current average Cycle Time
M7 Subjective evaluation by Project manager
Question Q4 Is the performance of the process improving?
Metrics M8 Current average cycle time * 100
Baseline average cycle time
Question Q5 Is the current performance satisfactory from the point of viev
the project manager
Metrics M7 Subjective evaluation by Project manager
Question Q6 Is the performance visibly improving?
Metrics M8 Current average cycle time * 100

Baseline average cycle time

DACS

Fig 8. Example GQM Model[BasiliCaldieraRombach94]

A DACS State-of-the Art-Report

23

http://www.dacs.dtic.mil/

C. Tools and Procedures

Tools are useful for facilitating the data collection process. For example, in the past, defect data were
often collected on paper forms, similar to the Hewlett-Packard Defect Classification Worksheet shown in
section II.C above. However, many forms are available now in electronic versions. Most of the defect-
related tools are simply configurable interfaces to databases, where an administrator can configure the
fields that must be filled out for each defect reported. Some tools also have the feature of enforcing
predetermined workflow restrictions. For example, the tool could be programmed with a list of
developers, a list of managers and a list of testers. Once a tester has discovered a defect, the only perso
who can alter the state of the defect is a manager, who selects the developer to which the defect is
assigned. Once the developer has indicated that the defect has been repaired, only a tester can indicate
that the repair was successful.

There are benefits to enforcing workflow restrictions, but there are also drawbacks if the restrictions are
too rigid. For example, one company that responded to the 1998 survey (discussed in section II.F
above) originally chose to enforce the restriction that only the tester who originally discovered the defect
could close out the defect and mark the repair successful. The thinking was that the original tester
would be most familiar with the defect and thus in the best position to make the judgment on the quality
of the repair. However, if the tester were on vacation or left the company, it would not be possible to
mark the defects as repaired without getting a database administrator to override the workflow
restriction. This situation became too burdensome, and eventually the company changed defect tracking
tools. A second company that also responded to the 1998 survey chose not to enforce any workflow
restrictions in their defect tracking tool. The tool allows any engineer regardless of position to make any
addition or change to any defect in the system at any time. However, the system also keeps a detailed
log of what changes were made, when they were made and by whom, so no information is ever lost.

After the data are collected, they must be validated. As previously mentioned in the discussion of the
efforts at the Software Engineering Laboratory at NASA-Goddard (section Il.A above), a separate team
can inspect the defect data for inconsistencies and contradictions. In [Weiss81], dedicated error analysts
would interview developers whenever the analyst did not understand something on the error report form,
and [WeissBasili85] mentions interviewing an engineer whenever a possible discrepancy arises with
some data that the engineer collected. Additionally, more general interviews can solicit candid
comments on how closely the engineers conformed to the specified process. If process conformance is &
problem, perhaps the data collection process needs to be altered or maybe the engineers need more
training. It is also important to determine whether or not the data collection efforts are complete, in that
every defect is properly entered and tracked in the system [BasiliWeiss84]. Without validation, as many
as half of the defect forms collected may have at least one inaccuracy [BasiliWeiss84]. It is impossible
to make correct inferences from inaccurate data, so it is essential to devote some resources to verifying
the validity of the data.

The next step involves analyzing the data. This step most reflects the maturity of the organization, and
also evolves the most over time. Data analysis will likely be very simple in an organization just moving
from the “firefighter” stage to the “reactive” stage, or an organization starting at CMM level 1 and
slowly making efforts to improve maturity. As more and more data are collected, a repository of data
can be built, and a baseline can be generated. At this point, data analysis may involve statistical
analysis, root cause analysis, or any of the efforts described in section Il above.

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 24

http://www.dacs.dtic.mil/

After the analysis itself is conducted, the final step involves feedback, both to the individuals who
participated in the project and the organization as a whole. The results of the analysis may suggest
changes that may reduce defect insertion or enhance defect prevention, detection and correction.
Successful process change, as well as evidence of its effect, should be publicized so that participants
know that their efforts have made a difference [Grady87]. As developers learn that they can actually
affect decisions on process improvements, morale will improve and developers will be more likely to
make suggestions and participate in defect analysis and classification efforts [Mays90]. As an
organization evolves, the feedback may also include a more formalized component, such as a repository
of experience as discussed in the defect prevention work (section II.E above). This common body of
knowledge allows an entire organization to learn from the experiences of each team, another key
component to improving the maturity of the environment.

D. Conclusion

In conclusion, the following process should be followed by an organization seeking to implement or
improve upon a defect classification and analysis effort:

1. Establish well-defined goals.

2. Get management support for the effort and agreement on the goals and how to implement
development process changes.

3. Divide the goal into subcomponents by generating “Questions of Interest.”

4. Determine the metrics to collect whose values will help developers and managers answer the
“Questions of Interest.”

5. Train personnel in defect data collection methods and tools, where tools will help to support
data collection, tracking and analysis.

Collect the data.
Validate the data.
Analyze the data.

Publish results and give feedback. Eventually this feedback will flow into step 1, helping to
generate new goals so the organization can grow and mature. Likewise, the data gathered in
step 6 will eventually populate a large repository from which a baseline can be generated,
thereby improving the analysis in step 8.

What can an organization expect from following the nine-step process described above? The
organization will gain understanding about both the products being developed and the development
processes. At first, the development manager will only be able to look at a small set of defect data and
use logic and gut feeling to try to identify areas that need improvement, but as time goes by the
organization will be able to build a baseline which will allow the managers to run statistical analyses to
analyze the product and processes. At this point, the level of understanding will allow the development
teams to focus their efforts on improving processes. The organization will be able to better understand
the strengths and weaknesses of their own environment and will be able to have a concrete measure of
how much a process change improves software quality. Finally, the engineers will know from the
feedback cycle that their opinions matter and that they can view processes as a way of improving quality
rather than simply as constraints that must be lived with. The end result is a mature organization which
understands its environment, learns from its experiences, and improves its processes in a manner
consistent with the goals and needs specific to that organization.

© 0N

rﬂ:ﬁ A DACS State-of-the Art-Report 25

http://www.dacs.dtic.mil/

V. Acknowledgments

We would like to thank Shari Lawrence Pfleeger and Forrest Shull for their valuable comments on this
report.

V. References

[BasiliCaldieraRombach94] Basili, Victor R., Gianluigi Caldiera, and H. Dieter Rombach (1994).
“Goal Question Metric Paradigm.” Reprinted fréncyclopedia of Software Engineering —
2 Volume SetJohn Wiley & Sons, Inc.

[BasiliPerricone84] Basili, Victor R., and Barry T. Perricone (1984). “Software Errors and Complexity:
An Empirical Investigation."Communications of the ACM7(1) (January):42-52.

[BasiliRombach87] Basili, Victor R., and H. Dieter Rombach (1987). “Tailoring the Software Process
to Project Goals and Environmentd?toceedings: Ninth International conference on Software
Engineering 345-357.

[BasiliWeiss81] Basili, Victor R., and David M. Weiss (1981). “Evaluation of a Software Requirements
Document by Analysis of Change Dat&?toceedings: Fifth International Conference on Software
Engineering 314-323.

[BasiliWeiss84] Basili, Victor R., and David M. Weiss (1984). “A Methodology for Collecting Valid
Software Engineering DatalEEE Transactions on Software Engineerifd-10(6)
(November):728-738.

[Basilizelkowitz78] Basili, Victor R., and M. Zelkowitz (1978). “Analyzing medium Scale Software
Developments,Proceedings: Third International Conference on Software Engineetitfi;123.

[Chillarege92] Chillarege, Ram, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S.
Moebus, Bonnie K. Ray, and Man-Yuen Wong (1992). “Orthogonal Defect Classification: A
concept for In-Process MeasurementSEE Transactions on Software Engineeri@§(6):476-493.

[EIEmam98] El Emam, Khaled, and Isabella Wieczorek (1998), “The Repeatability of Code Defect
Classifications.” Technical Report. International Software Engineering Research
Network, ISERN-98-09.

[Endres75] Endres, Albert. (1975). “An Analysis of Errors and Their Causes in System Programs.”
Proceedings: International Conference on Reliable Softnwa2&-336.

[GradyCaswell87] Grady, Robert B., and Deborah Caswell (19Baffware Metrics: Establishing a
Company-Wide Metrics PrograntEnglewood Cliffs, NJ: Prentice-Hall.

[Grady92] Grady, Robert B. (1992Practical Software Metrics for Project Management and Process
Improvement.Englewood ClIiffs, NJ: Prentice-Hall.

[Grady96] Grady, Robert B. (1996). “Software Failure Analysis for High-Return Process Improvement
Decisions.”Hewlett-Packard Journal}7(4) (August).

[[EEE83] IEEE (1983).IEEE Standard 729: Glossary of Software Engineering Terminolaxsy.
Alamitos, CA: IEEE Computer Society Press.

I'_){CE Using Defect Tracking and Analysis to Improve Software Quality 26

http://www.dacs.dtic.mil/

[Mays90] Mays, R.G., C. L. Jones, G. J. Holloway, and D. P. Studinski (1990). “Experiences with
Defect Prevention.IBM Systems Journa29 (1) (January):4-32.

[OstrandWeyuker84] Ostrand, Thomas S., and Elaine Weyuker (1984). “Collecting and
Categorizing Software Error Data in an Industrial Environmenh& Journal of Systems and
Software 4:289-300.

[Pfleeger98] Pfleeger, Shari Lawrence (1998dftware Engineering: Theory and Practitépper
Saddle River, NJ: Prentice-Hall.

[Shull98] Shull, Forrest (1998). Developing Techniques for Using Software Documents: A Series of
Empirical Studies. PhD Thesis, Computer Science Department, University of Maryland.

[Weiss78] Weiss, David M. (1978[Evaluating Software Development by Error Analysis: The Data
from the Architecture Research FacilityTechnical Report 8268. Naval Research Laboratory,
Washington DC.

[WeissBasili85] Weiss, David M., and Victor R. Basili (1985). “Evaluating Software Development by
Analysis of Changes: Some Data from the Software Engineering Labora#¥ Transactions on
Software EngineerindsE-11(2) (February):157-168.

m A DACS State-of-the Art-Report 27

http://www.dacs.dtic.mil/

